
Using Simulation to Validate Performance of
MPI(-IO) Implementations

Julian M. Kunkel

University of Hamburg
Bundesstraße 45a
20146 Hamburg

julian.martin.kunkel@informatik.uni-hamburg.de

Abstract. Parallel file systems and MPI implementations aim to exploit
available hardware resources in order to achieve optimal performance.
Since performance is influenced by many hardware and software factors,
achieving optimal performance is a daunting task. For these reasons, op-
timized communication and I/O algorithms are still subject to research.
While complexity of collective MPI operations is discussed in literature
sometimes, theoretic assessment of the measurements is de facto non-
existent. Instead, conducted analysis is typically limited to performance
comparisons to previous algorithms.
However, observable performance is not only determined by the qual-
ity of an algorithm. At run-time performance could be degraded due
to unexpected implementation issues and triggered hardware and soft-
ware exceptions. By applying a model that resembles the system, sim-
ulation allows us to estimate the performance. With this approach, the
non-function requirement for performance of an implementation can be
validated and run-time inefficiencies can be localized.
In this paper we demonstrate how simulation can be applied to assess
observed performance of collective MPI calls and parallel IO. PIOsimHD,
an event-driven simulator, is applied to validate observed performance on
our 10 node cluster. The simulator replays recorded application activity
and point-to-point operations of collective operations. It also offers the
option to record trace files for visual comparison to recorded behavior.
With the innovative introspection into behavior, several bottlenecks in
system and implementation are localized.

Keywords: Simulation, MPI-IO, Performance evaluation

1 Introduction

Parallel file systems and MPI implementations aim to achieve optimal perfor-
mance on all systems. The performance of communication and IO certainly
depends on the hardware characteristics – the specific hardware configuration
limits potential network throughput, computation power and available memory
bandwidth. The selection of the optimal algorithm depends on the hardware
characteristics, the network topology and application behavior. From a library’s

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38750-0_14
1/15



point of view, optimization can be done based on the parameters provided by
the programmer. Typically, this includes the memory datatype, the communica-
tor, target/source rank (for all-to-one or one-to-all operations), and the actual
amount of data shipped with the call. Additionally, the process placement across
the hardware resources is important. Therefore, MPI implementations offer sev-
eral algorithms and they realize a rich variety of optimization strategies to gear
algorithms towards the given system.

This adaption leads to better exploitation of available hardware resources
and, ultimately, to better performance and thus application runtime. However,
the interplay of hardware optimizations such as caches, the software optimiza-
tions offered by operating system and intermediate libraries result in complex be-
havior which make the selection of an optimal algorithm hard. With Open MPI,
MPICH2, MVAPICH2, this complexity also leads to a diverse landscape of open
source MPI implementations. Also, vendors and integrators offer their own pro-
prietary solution.

Up to now, effectiveness of alternative algorithms is mainly demonstrated
by comparing measured performance with performance of existing algorithms.
However, observable performance is not only determined by the quality of an
algorithm. At run-time performance could be degraded due to unexpected im-
plementation issues and triggered hardware and software exceptions. Visualizing
the real system activity helps analyzing the behavior and localizing regions that
require most of the execution time. However, determining whether recorded ac-
tivity is conducted optimally is not possible because it depends on platform and
optimizations.

In this paper we propose a simulation driven systematical validation of MPI-
IO performance. By applying a model that resembles the system, simulation
approximates performance and, thus estimates performance of algorithms. The
main contributions of the paper are 1) a performance study motivating inte-
grated performance testing of MPI and 2) a discussion of a feasible implementa-
tion of such an approach. Without the power of simulation, many performance
bottlenecks could not be found in our cluster.

This paper is organized as follows: In Section 2 an overview of the state-of-the-
art is presented. In Section 3 the benefits of simulation to evaluate performance
of MPI-IO implementations are described. A brief introduction to the simulator
and the underlying hardware and software models is given in Section 4. Several
experiments in Section 5 illustrate how theory aids to localize bottlenecks and
to check for correctness. While the model is developed manually, this process
could be automated to perform these steps automatically. Section 6 concludes
the paper.

2 State of the art

Many algorithms were proposed to optimize collective communication. They
are either directly implemented in one of the MPI implementations, e.g. [1], or
provided as an external library such as STAR-MPI [2] or Magpie [3].

2/15



To our knowledge, MPI libraries lack self-awareness. There is no implementa-
tion which takes the hardware characteristics into account while determining an
algorithm for collective communication or I/O. While middleware implementa-
tions ship with tests for functionality they do not automatically detect hardware
characteristics. Instead, a library is shipped with empirically chosen defaults,
which might be determined for a completely different system than the system
the library is deployed on. Tuning of these parameters is time consuming, thus,
the defaults might achieve only a fraction of theoretical performance. Many of
these parameters exist, for example, in Open MPI, the Modular Component Ar-
chitecture (MCA) lists more than 250 parameters on a COST Beowulf cluster.

Although MPI implementations are not considering hardware characteristics,
they have become increasingly aware of the communication topology and try to
utilize shared-memory communication if possible which leads to SMP-aware col-
lective algorithms. For example, the CARTO framework of Open MPI provides
topological information.

As algorithms must be handcrafted towards the system – for instance for a
BlueGene [4] – one major problem is to pick the best algorithm for a system.
Several approaches have been developed that assist in determining the best al-
gorithm and MPI configuration. The Abstract Data and Communication Library
(ADCL) [5] uses historic knowledge during the application run. ADCL assumes a
program performs operations iteratively – in the first few iterations ADCL eval-
uates a set of MPI functions to determine which one is best suited for the given
problem, then this function is applied to subsequent invocations. Compared to
ADCL, the Self-Tuned Adaptive Routines for MPI Collective Operations (STAR-
MPI) provides a rich set of MPI implementations for collective operations by
itself [2], for instance a set of 13 algorithms is supplied for MPI Alltoall().

For parallel I/O, the problem becomes even more complex since it depends
on communication. For example, non-contiguous operations and collective calls
have been defined in MPI-IO which lead to a classification of data access into four
levels [6]. These levels are characterized by two orthogonal aspects: contiguous
vs. non-contiguous data access, and independent vs. collective calls. Depending
on the level, a different set of optimizations can be thought of, for example,
two-phase I/O and multiphase-collective I/O [7] aim to improve collective non-
contiguous access. An adaptive approach is introduced in [8], which automati-
cally sets hints for collective I/O based on the access pattern, topology and the
characteristics of the underlying file system.

Typically, evaluation of improved algorithms is conducted by comparing per-
formance of existing algorithms with the new algorithm. This includes improve-
ments in the communication submodules of MPI, e.g., in Nemesis [9], or com-
pletely new MPI implementations such as Open MPI[10]. Similarly, parallel I/O
research demonstrates improvements by comparing observed performance. In
most cases, a baseline of expected performance is not provided. This is mainly
due to the complexity of determining these baselines. There are a few excep-
tions to this general observation, but theoretic considerations are restricted to
simple cases. For example, in [11] upper bounds for performance are provided

3/15



based on the component throughput and latency. In many cases, very coarse
estimates could be computed even for complex behavior, but these are not very
tight. Development of an adequate mathematical equation for complex behavior
is nontrivial. Simulation of the behavior is much easier.

There are many simulators for distributed systems, most focus on communi-
cation routines, for example, the Structural Simulation Toolkit (SST) [12], Log-
GOPSim [13] and Dimemas [14].

Some simulators can replay previously recorded MPI(-IO) activity inside the
virtual environment. For example, trace information is altered in [15], then an
MPI program replays the modified trace on the original machine, which auto-
matically enforces causality between dependencies among processors. While this
approach scales well, it is not possible to simulate other hardware configurations
or to gain insights into MPI. LogGOPSim is a simulator for a class of analytical
models of the logxP family [16]. It supports a simple network collision model.
Dimemas reads trace files and applies an analytical model to individual and
collective communication. Network collisions are modeled in an abstract way by
limiting the maximum throughput which can occur at a given time over a central
network infrastructure.

CODES [17] and PIOsimHD [18] target parallel I/O. Built on top of the Rens-
selaer Optimistic Simulation System (ROSS), CODES supports parallel discrete-
event simulation of queuing models. It has been successfully applied to study the
role of burst buffers in systems with 100k application processes and 120 PVFS
file servers. In contrast to the introduced systems, PIOsimHD covers parallel
I/O and allows replaying of recorded MPI traces on a high level of abstraction –
commands are implemented in the simulator to react on system conditions. The
event-driven nature of PIOsimHD allows localizing of network congestion and to
evaluate I/O optimization on client, server or disk side. For example, an analysis
of several I/O schedulers and collective I/O variants has been performed using
PIOsimHD in [19]. While simulation has been used to evaluate what-if scenar-
ios, to our knowledge it has not been used to systematically validate measured
MPI-IO performance in order to identify hidden bottlenecks. Instead, complex
simulation parameters are introduced and fitted to meet observations.

3 Using Simulation to Validate MPI-IO Performance

Simulation aids in validating MPI-IO performance in two ways: First, by com-
paring observed run-time and theoretical run-time estimate quantitatively, im-
plementation issues and unexpected bottlenecks can be identified. This is espe-
cially useful for validation of complex operations such as collective operations.
Second, a complex sequence of operations, such as the behavior of real applica-
tions, can be inspected visually and qualitatively compared to a simulated run of
the application. Therewith, unexpected behavior of individual operations can be
identified and assessed. For both scenarios, simulation parameters can be varied
to study the impact of certain hardware characteristics, for example by turning
off computation.

4/15



We propose systematic validation of performance achieved with MPI-IO func-
tions using simulation. Imagine an MPI-IO implementation which does not only
run functional tests after installation but also performance benchmarks and as-
sesses the results. First, it could run simple point-to-point benchmarks and create
a system model. Then complex benchmarks could be run and their performance
could be assessed automatically for soundness. For example, a bi-directional mes-
sage transfer of a large message with MPI Sendrecv() should require the same
time as a unidirectional communication. The basic system model is of interest
for performance optimization by itself, as it illustrates expected communication
overhead. An administrator could compare these performance characteristics
with micro-benchmarks to ensure that the basic communication routines extract
the performance as anticipated.

This becomes more interesting for complex operations, as their performance
cannot be understood easily. If expected and observed performance diverge too
much, the system should raise a warning. Then the administrator has a starting
point for investigating performance degradation which could be due to MPI-
internal overhead, kernel, or external libraries. A result telling the administrator
MPI performance behaves as anticipated is valuable too, as it reduces the chance
to experience unexpected performance loss in production. Finally, by determin-
ing hardware characteristics at installation time, these values could be used at
run-time to determine well-suited collective algorithms without manual inter-
vention and ultimately allow a self-aware MPI implementation.

To conduct such a validation, it is mandatory for the simulation to mimic
the expected behavior of the experimental system. Thus, basic model parameters
should have similar characteristics as the real system. Since simulation should
help identifying inefficiencies, it is not constructive to mimic the real system
perfectly as we could not spot differences and thus unexpected behavior. In
both cases, it helps if activities of an application can be recorded and replayed
by the simulator because this reduces the effort to validate the execution. By
this means theoretically any MPI benchmark can be run and its results can be
easily compared to our expectations. For later analysis, it is also useful if the
simulator can create trace files which can be compared to real traces.

4 PIOsimHD

The goal of the sequential discrete event simulator PIOsimHD is to assist MPI-
IO research and to foster understanding of performance factors in clusters.
PIOsimHD performs a discrete event simulation and, if requested, stores the pro-
cessing as trace files. It can also read activity from recorded trace files. HDTrace
is an experimental tracing environment which also provides tools to instrument
existing applications and to record activity of PVFS and MPI internal commu-
nication. Simulation results can then be visualized by Sunshot, which enables
a comparison of the recorded process and file system activities and simulation
results.

5/15



PIOsimHD offers a hardware model which reflects the common sense of a
cluster computer: Several compute resources (CPUs) are hosted on a node which
is connected to one or several networks via a network interface (NI). Arbitrary
network topologies can be created. On each node one I/O server can be placed,
each holding a cache layer which schedules operations, and an I/O-subsystem.

To cope with several levels of abstraction, a component can have several
implementations. Component implementations are parameterized with certain
characteristics. Usually, characteristics are provided in vendor specifications or
obtained by benchmarking the existing system. The level of detail of the cluster
hardware covers basic information describing an Ethernet based cluster. With
the amount of memory and number of CPUs, a node offers shared resources for
hosted processes. Each CPU processes a fixed number of instructions per second.
The memory is used for caching I/O on the server side.

The simulator permits the user to create arbitrary network graphs repre-
senting store-and-forward systems. Network edges have a latency and a trans-
fer rate. Network nodes have a maximum bandwidth to relay data. With the
help of network components, memory access of communication can be simulated
which permits modeling of local communication. A special node adds the local
throughput as an additional parameter, which is used when two direct neigh-
boring components of this network node exchange data. An example model of
a dual-socket node is given in Figure 1. In this figure, throughput and latency
of all network components are given as observed on our Intel Westmere cluster
consisting of 10 nodes.

To utilize the network well, a network flow model was designed in which
messages are fragmented into packets of a maximum size, which flow from source
to target in a stream. When data is transferred from one component to another,
the transmission of incoming data flows is continued. The maximum number
of packets in flight for every stream is limited by the bandwidth-delay-product
of the given link. While many concepts can be found in real systems, the data
flow differs because this concept achieves the highest utilization of all network
components for all streams, and it does not throw packets away.

A hard-disk as an I/O-subsystem is modeled by a sequential transfer rate,
an average access time, track-to-track-seek time and RPM. Depending on the
distance to the last byte accessed within a file, a disk will either perform no seek,
will seek to the neighboring track or will apply the average access time. Access
to other files always enforces an average seek.

An abstract parallel file system defines the interaction between client and
server. The abstract model describes many parallel file systems because they
work similarly. Clients and servers interact in a similar fashion to the PVFS
model, but the concept is universal to most parallel file systems: File data is
partitioned among all servers as defined by a selectable distribution function. To
write data, a client requests a write operation from the server and then starts to
transfer all data. File sizes are updated once a write operation finishes. Metadata
operations are currently not considered since these depend on the specific file
system. More details can be found in [18].

6/15



<Node>

10864 MIB/s

Socket #0

<Process>
...

<Process>
40 GiB/s

3427 MiB/s

Socket #1

48,000 MByte/s

71.9 MiB/s

3781 MiB/s 4556 & 3778 MiB/s
...

(a) Throughput.

<Node>

Socket #0

<Process>
...

<Process>

0.038 µs 

Socket #1

19.9815 µs 

0.079 µs 

QPI

mem

NI

Switch

...

(b) Latency of edges.

Fig. 1. Network topology model for the working groups cluster. Throughput of
intra-socket communication is slightly higher

4.1 Experiments

During the validation of the simulator, several unexpected bottlenecks in hard-
ware and software could be identified. An excerpt of interesting results demon-
strating the benefit of validating the soundness of observed MPI-IO performance
is given in the following. Measurements are executed on our 10 node Ubuntu clus-
ter; interconnected via. Gigabit-Ethernet, each node is equipped with two In-
tel Xeon 5650 processors providing 12 cores for the experiments and 12 GByte
of memory. Used software versions are: Open MPI 1.5.3, MPICH2 1.3.1, and
Orangefs-2.8.3. The conducted validation is described in detail in [18].

To conduct complex validation runs, recorded activities are replayed in the
simulator. Thus the same sequence of compute, network and I/O activity is exe-
cuted. While a compute job takes the exact time as recorded in a validation run,
execution time of parallel I/O and communication is computed by the simulator
using the virtual file system and network models.

Parameterization To parameterize the simulator for a validation run, the hard-
ware characteristics must be determined. Throughput and latencies for the net-
work links have been measured using MPI point-to-point operations (values are
annotated in Fig. 11). An HDD is characterized by a track-to-track seek time of
1.1 ms, an average seek time of 9 ms, a sequential transfer rate of 96 MiB/s and
7200 RPM. The hardware model uses the fast seek time for accesses to the same
file to an offset which is within a window of 1 MiB to the last access.

Communication Before analysis of collective results is conducted, a simple ex-
ample of a suboptimal point-to-point communication pattern is given. In this
experiment, each process exchanges a 100 MiB message with Rank 0 by calling
MPI Sendrecv() – the whole experiment is repeated 9 times. The average mea-
sured time is plotted for a variable number of nodes and processes in Figure 2a

1 These values have been validated with network benchmarks such as Iperf. The issues
with the network are discussed in Section 4.1.

7/15



(a) Time (b) Aggregated throughput

Fig. 2. Sequential data exchange of Rank 0 and all other processes using
MPI Sendrecv() for several configurations and 100 MiB messages

and the achieved throughput is illustrated in Figure 2b. It can be observed that
PIOsimHD approximates Open MPI very well, but MPICH2 needs more time
than anticipated by simulation. Without a simulation tool, the performance
could be approximated manually, for example, using the following few consider-
ations: Since our network allows bi-directional communication, about 140 MiB/s
can be achieved over the single node hosting Rank 0, this performance can be
seen for many configurations. However, already this simple pattern shows that
computation is not this simple. Due to shared memory intra-node communi-
cation, processes hosted by the same node achieve much higher throughput.
This can be observed in Figure 2b for Open MPI and PIOsimHD. Thus, while
a manual computation of the expected throughput is possible, it is non-trivial.
By comparing simulation results with the results of MPICH2, the unexpected
slow-down become visible and could be subject for further investigation2.

Examples for collective communication are given in Figure 3. Experiments
with 10 KiB message transfers are repeated 10,000 times and for larger messages
at least 9 times. Figures show the quartiles for the small messages to account for
deviation, and minimum and average values for larger messages (typically, the
slowest time is much higher than the average). In Figure 3a and Figure 3b it can
be seen that MPI Allgather() is well approximated by PIOsimHD, and thus ob-
served performance is consistent with our theoretic expectations. In comparison,
the intra-node algorithm of Open MPI achieves a better performance for config-
urations with 2 nodes. For small messages, Figure 3a shows much better times
for configurations 4-8 and 8-16 than for other configurations. Without the simu-
lation result, one question might be whether this behavior is due to the system’s
characteristics. Since the simulator executes the exact same communication pat-
tern and results in similar performance, we can conclude the communication
algorithm changes and leads to this behavior3.

2 Actually, our version of MPICH2 extracted the same performance numbers as for
uni-directional communication.

3 Actually, the trace files can be inspected demonstrating correctness of this theory.

8/15



Similarly, an analysis of MPI Allreduce() shows interesting behavior (see
Figure 3c). While the measurements of a single configuration fluctuate much
more, the simulation still recreates the overall pattern. The complexity of the
analysis can be observed for larger messages in Figure 3d. While Open MPI shows
a completely different behavior than MPICH2, none of the algorithms is optimal
in all cases. In this example, PIOsimHD estimates better times than MPICH2,
which reasons should be analyzed further. Thanks to simulation, the impact
of certain factors can be studied. For example, the impact of computation has
been investigated – as it turns out, the required time only improves slightly when
recorded computation is not simulated.

Visual inspection of application behavior Finally, a run of our Jacobi PDE solver
is evaluated with the simulation. While the simulation recreates the overall pat-
tern quite well (refer to [18]), communication in the final phase takes longer than
anticipated. Timelines of the cleanup phase are given in Figure 4. Rank 0 receives
selected lines of the PDE from all processes (users might inspect them to validate
the run). Several data transfers need 0.2 ms although the sender and receiver is
ready. Since only 400 KiB of data is transferred, a performance of only 2 MiB/s
is achieved. This problem has been found by first comparing trace profiles, then
a visual inspection of the individual communications has been performed. Dur-
ing the iterations, message exchange behaves as anticipated by the simulation.
Without theoretic considerations, an assessment of the performance in terms of
overall achieved time and the individual operations would be difficult. However,
estimating run-time for an complex application is cumbersome.

Parallel I/O With Parabench [20] the four levels of access have been investigated
for several setups. Results for independent contiguous reads are given for a vari-
able number of clients and servers in Figure 5. In these experiments, each client
reads 100 KiB (and 100 MiB) records – a total of 1 GiB of data is accessed per
client. Client records are distributed in round-robin over the logical file, i.e. the
first record of the file is accessed by Rank 0, then by Rank 1 and so forth. Data
is stored on tmpfs, thus there is no slow I/O device involved and performance is
expected to be limited by the network. The simulator approximates performance
for 100 MiB records well as shown in Figure 5a. However, it overestimates per-
formance of 100 KiB records significantly as illustrated in Figure 5b. Since the
model uses measured latency and bandwidth as characteristics, these hardware
factors cannot be the reason. A detailed analysis revealed timing effects in the
real system leading to congestion of individual servers while most servers are
idle. Once requests of multiple clients are pending on a single server, all clients
must wait for data stored on this server but since the server multiplexes the
NIC, data transfers of all responses take longer. With a slight variation in the
simulation characteristics, these effects can also be reproduced in-silicon.

One experiment was conducted that changed the packet size of the store-
and-forward network. The simulated network relays packets of 100 KiB size; a
lower packet size of 10 KiB can be chosen, which improves concurrency of the
components and the theoretic performance.

9/15



(a) MPI Allgather(), 10 KiB of data

(b) MPI Allgather(), 10 MiB of data

(c) MPI Allreduce(), 10 KiB of data

(d) MPI Allreduce(), 10 MiB of data

Fig. 3. Simulation of inter-node collective communication for a variety of con-
figurations (# of nodes, # of processes) 10/15



(a) Observed

(b) Simulated

Fig. 4. Final phase of a Jacobi PDE solver – traces of observation and simulation

During the validation of the Jacobi PDE, an inefficiency in the PVFS module
of MPI-IO could be identified and resolved. The PDE outputs the matrix diag-
onal for later inspection as a sequential 64 KiB data block. Internally, a memory
datatype is used to address the matrix diagonal in one write call. However, the
write takes about 70 ms while the simulator estimates 2 ms4. Using HDTrace,
a detailed analysis of client and server activities has been made revealing that
PVFS split the 64 KiB block into 512 bytes requests. The reason is the handling
of non-contiguous datatypes by ROMIO. Since ROMIO does not use an addi-
tional buffer to store data, every non-contiguous region in memory is normally
accessed with an individual operation. With ListIO, PVFS supports encapsulat-
ing to 64 non-contiguous operations in one request. Since the matrix diagonals
are 8 byte, 512 byte requests are created. For the application, the problem could
be fixed by setting the undocumented hint romio pvfs2 listio write which en-
ables handling of memory and file datatypes in ROMIO. By setting the hint,
the average time for a single write is reduced to 3.4 ms which is close to the
estimation.

A screenshot of the obtained traces for one iteration of a write phase are
shown in Figure 6. In the default operation, server and trove timeline show many
small operations. With the applied hint, one large write operation can be seen
in the timeline (the additional small write operation left updates the header of
the file in both cases).

4 The actual time depends on the current activity on the accessed servers.

11/15



(a) 100 MiB records (b) 100 KiB records

Fig. 5. Performance of independent contiguous I/O with a variable number of
clients and servers. Data is stored on tmpfs

(a) Default operation; details of one request are shown

(b) With supplied hint

Fig. 6. Screenshot of the PDE’s data exchange for one client and one server

12/15



Difficulties to identify causes of performance degradation The intention of per-
formance analysis is not only to localize but to resolve the causes of potential
performance degradation. However, as it turned out the identification of trig-
gered issues is non-trivial. We invested several month trying to localize the gen-
eral issues in our network stack and to identify and fix the performance issue
with PVFS. The latter issue could only be analyzed in detail thanks to the de-
tailed tracing mechanisms of HDTrace. The fix involved communication with the
developers, but also detailed code inspection of PVFS and MPI-IO.

Unfortunately, debugging of the network issue showed little success. As it
turned out, operations sometimes take much longer than expected (10 times the
average time, an overhead of about 0.2 s), and there was the network limitation
of 67 MiB/s. To identify the reason for the performance degradation, several
regulating knobs have been evaluated on our production system: TCP-tuning,
alternative MPI implementations (MPICH2 and Open MPI), different Linux ker-
nel and also CentOS as an alternative distribution. Also, existing network tools
and benchmarks have been used to validate the observed performance.

The insight of all this effort is: Performance could only be improved a little
by testing many alternative sets of TCP-options. With newer kernel versions,
the throughput improved to 71 MiB/s and finally with kernel 3.5 to 117 MiB/s.
Interestingly, by using CentOS, the variance of network packets stabilizes and
throughput is good. As these issues disappeared by using newer kernels and an-
other distribution, a detailed analysis of involved libraries and kernel is required.

5 Summary & Conclusions

In this paper, we describe the benefit of using simulation for validating per-
formance of MPI-IO implementations. To estimate performance, the simulator
executes the activity of a parallel program on a virtual cluster with similar char-
acteristics as the experimental system. In many cases, a very good match to ob-
servations is achieved, which validate that system and implementation behavior
is consistent. However, an excerpt of experiments is given in which performance
gaps become visible. For example, observed performance of MPI Sendrecv()

and MPI Allreduce() fall behind the expectations which indicate a demand for
further investigation. Automatic performance assessment could be an integral
part in a test-suite – a simulator complements existing benchmarks by creating
run-time estimates. Shipped with MPI implementations, these tests would spot
unexpected performance inefficiencies directly. While we tried to identify the
causes of the network performance degradation in kernel, libraries and system
hardware, we did not succeed so far. Nevertheless, without systematic testing
we would be unaware of these inefficiencies, showing the necessity of automatic
tools and the involvement of developers.

Suboptimal behavior during parallel I/O has been investigated but it is much
more complex than collective I/O. For example, timing effects may overload
individual servers. Finally, a performance problem in an application could be
identified and with the help of advanced tracing of client and server behavior,

13/15



the reasons could be identified and fixed by applying an MPI hint. Overall,
the virtual laboratory of HDTrace allows us to identify inefficiencies and to
study behavior of communication and file system, to conduct research on new
algorithms, and to evaluate future systems. In the future, we will try to build
the envisioned system for automatic validation of MPI-IO behavior.

Acknowledgements

I want to thank the PVFS development team to help resolving the performance
degradation of writing the non-contiguous matrix diagonal.

References

1. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. International Journal of High Performance Computing
Applications 19(1) (February 2005) 49–66

2. Faraj, A., Yuan, X., Lowenthal, D.: STAR-MPI: Self Tuned Adaptive Routines
for MPI Collective Operations. In: Proceedings of the 20th annual international
conference on Supercomputing. ICS, New York, NY, USA, ACM (2006) 199–208

3. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe:
MPI’s Collective Communication Operations for Clustered Wide Area Systems. In:
Proceedings of the seventh ACM SIGPLAN symposium on Principles and practice
of parallel programming. PPoPP, New York, NY, USA, ACM (1999) 131–140

4. Miller, S., Kendall, R.: Implementing Optimized MPI Collective Communication
Routines on the IBM BlueGene/L Supercomputer. Technical report, Iowa State
University (2005)

5. Gabriel, E., Huang, S.: Runtime Optimization of Application Level Communication
Patterns. In: International Parallel & Distributed Processing Symposium. IPDPS,
IEEE (2007) 1–8

6. Thakur, R., Gropp, W., Lusk, E.: Optimizing Noncontiguous Accesses in MPI-IO.
Parallel Computing 28 (2002) 83–105

7. Singh, D.E., Isaila, F., Pichel, J.C., Carretero, J.: A Collective I/O Implementation
Based on Inspector–Executor Paradigm. The Journal of Supercomputing 47(1)
(2009) 53–75

8. Worringen, J.: Self-adaptive Hints for Collective I/O. In: PVM/MPI. (2006)
9. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scal-

able, low-latency, message-passing communication subsystem. In: Cluster Com-
puting and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on.
Volume 1. (2006) 10–pp

10. Graham, R., Shipman, G., Barrett, B., Castain, R., Bosilca, G., Lumsdaine, A.:
Open MPI: A high-performance, heterogeneous MPI. In: Cluster Computing, 2006
IEEE International Conference on. (2006) 1–9

11. Kunkel, J., Ludwig, T.: Performance Evaluation of the PVFS2 Architecture. In:
PDP ’07: Proceedings of the 15th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, Euromicro (2007) 509–516

12. Rodrigues, A.F., Murphy, R.C., Kogge, P., Underwood, K.D.: The Structural
Simulation Toolkit: Exploring Novel Architectures. In: Proceedings of the 2006
ACM/IEEE conference on Supercomputing. SC, New York, NY, USA, ACM (2006)

14/15



13. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim: Simulating Large-Scale
Applications in the LogGOPS Model. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing. HPDC, New
York, NY, USA, ACM (2010) 597–604

14. Girona, S., Labarta, J., Badia, R.M.: Validation of Dimemas Communication
Model for MPI Collective Operations. In: Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Springer-Verlag (2000) 39–46

15. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying Causality between
Distant Performance Phenomena in Large-Scale MPI Applications. In: Proceedings
of the 2009 17th Euromicro International Conference on Parallel, Distributed and
Network-based Processing. (2009) 78–84

16. Tu, B., Fan, J., Zhan, J., Zhao, X.: Accurate Analytical Models for Message Passing
on Multi-core Clusters. In: Proceedings of the 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing. (2009) 133–139

17. Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., Ross, R.: CODES: Enabling
Co-design of Multilayer Exascale Storage Architectures. In: Proceedings of the
Workshop on Emerging Supercomputing Technologies 2011. (2011)

18. Kunkel, J.: Simulating Parallel Programs on Application and System Level. Com-
puter Science – Research and Development (online first) (May 2012)

19. Kuhn, M., Kunkel, J., Ludwig, T.: Simulation-Aided Performance Evaluation of
Server-Side Input/Output Optimizations. In: 20th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing. (2012) 562–566

20. Mordvinova, O., Runz, D., Kunkel, J., Ludwig, T.: I/O Performance Evaluation
with Parabench – Programmable I/O Benchmark. Procedia Computer Science
(2010) 2119–2128

15/15


