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Abstract Intelligently switching energy saving modes

of CPUs, NICs and disks is mandatory to reduce the

energy consumption.

Hardware and operating system have a limited per-

spective of future performance demands, thus automatic

control is suboptimal. However, it is tedious for a de-

veloper to control the hardware by himself.

In this paper we propose an extension of an exist-

ing I/O interface which on the one hand is easy to use

and on the other hand could steer energy saving modes

more efficiently. Furthermore, the proposed modifica-

tions are beneficial for performance analysis and pro-

vide even more information to the I/O library to im-

prove performance.

When a user annotates the program with the pro-

posed interface, I/O, communication and computation

phases are labeled by the developer. Run-time behav-

ior is then characterized for each phase, this knowledge

could be then exploited by the new library.
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1 Introduction

Newer hardware devices offer sophisticated power man-

agement with various states – each with different energy

and performance characteristics. Aim of those energy

saving modes is to reduce the energy footprint. Some

of these capabilities are hidden within the device while

others are disclosed to the operating system via an in-

terface. For instance, when a CPU is idle in modern pro-

cessors the microarchitecture reduces the voltage and

frequency automatically or turns off parts of the elec-

tronic by putting it into a so-called C-State. In the same
fashion storage and communication subsystems can be

put into energy saving modes.

It is mandatory to switch the states intelligently,

because switching between two states takes some time

– while changing CPU states is fast, changing the state

of a hard disk and network device is in the order of sec-

onds. Usually, the operating system manages the state

of deep sleep of CPU, network and communication de-

vices to ensure they are available to process their work

when needed. As the operating system does not know

the future workload, often historic knowledge about the

utilization is extrapolated to the future. For example,

a disk is spun down when it was idle for 10 minutes. In

High Performance Computing (HPC) even small inter-

ruptions, for example, by changing energy saving modes

of a CPU, can cause noise which could hinder synchro-

nization with 1000 other processors, thus those hard-

ware capabilities are often disabled.

Developers on the other hand, can predict the ac-

tivity of their program more accurately. This especially
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true in HPC environments, where in most cases only

one application runs on one node. Therefore, if the de-

veloper indicates the future activity to the operating

system, the operating system can control those devices

in an efficient manner.

However, developers do not see the need to instru-

ment the code to trigger specific hardware energy modes.

Therefore, we leverage an existing I/O interface, requir-

ing less code rewrite by the developers. Also, the I/O

interface will benefit by those extensions because it can

perform background operations more efficiently. In de-

tail, we propose to combine the CIAO API into the

existing ADIOS interface1. In brief, ADIOS replaces

existing interfaces aiming to improve I/O performance

and usability. It is already used in large scale scien-

tific applications. Small modifications to the ADIOS

API enable us to control the energy modes of the de-

vices automatically. Additionally, those interfaces also

strengthen performance analysis.

When a user annotates the program with the pro-

posed CIAO interface, I/O, communication and com-

putation phases are labeled by the developer. On the

one hand this information is exploited by ADIOS to

optimize the I/O – for example, by performing write-

behind –, on the other hand it could assist performance

analysis – that is, users could assess phases individually.

Lastly the interface could announce expected utilization

to the OS which in turn could control the hardware ac-

cordingly.

Seeing all the potential gains by such an API de-

velopers could be convinced to instrument their code

accordingly.

The structure of this paper is as follows. In section 2,

related work and the state of the art are discussed. The

original ADIOS interface is presented in detail in sec-

tion 2.1. In section 3, the proposed interface extension is

introduced. Benefits for trace analysis tools and energy-

saving mechanisms are discussed in sections 4 and 5. In

section 6, the paper is concluded and ideas for future

work are presented.

2 Related Work

As the aspects covered by this paper are threefold, re-

lated work on controlling energy saving modes, perfor-

mance analysis and the parallel I/O interface ADIOS

is provided.

Our project – called Energy-Efficient Cluster Com-

puting[?]2 – aims at making high performance comput-

1 Although, CIAO can be considered an extension of ADIOS,

for clarification we use the term CIAO to refer to it.
2 eeClust – http://www.eeclust.de/

ing more efficient with respect to economic and ecolog-

ical aspects. Its basic idea is to determine relationships

between the behavior of parallel programs and their

impact on the energy consumption of the underlying

compute cluster. Strategies will be developed to reduce

the energy consumption with as little impact as possible

on program performance. In addition to measuring and

analyzing program behavior our tools will be enhanced

to record energy-related metrics as well. Based on this

new energy efficiency analysis, the users can insert en-

ergy control calls into their applications which will allow

the operating system and the cluster job scheduler to

control the cluster hardware in an energy-efficient way.

This paper is supplementary to the eeClust project, the

introduced API will control the hardware with the ser-

vices provided by eeClust.

Next, related work for performance analysis of par-

allel application is briefly mentioned. The localization

of an performance issue on a existing system is a process

in which a hypothesis is supported by measurement and

theoretic considerations – in praxis due to the complex-

ity of the software mostly measurements are conducted.

Measurements are performed by executing the program

while monitoring run-time behavior of the application

and the system.

Popular post-mortem performance analysis tools are

TAU [?], Vampir [?] and Scalasca [?]. All of those tools

provide several ways to assist a developer to assess ap-

plication behavior. Typically, a GUI visualizes the ac-

tual behavior of the individual processes over time, or

it summarizes system metrics for each function in a

so called profile. Periscope [?] and PerfExpert [?] are

automatic tools which perform online scans of perfor-

mance properties – appropriate metrics are measured

and evaluated directly, ultimately locating the bottle-

necks to some extent. Many performance analysis tools

allow to group a sequence of instructions together in

a phase with a user-defined label. For example, with

TAU profiles can be created per phase, thus the user

can analyse phases of different activity separately.

These profiles or trace files can further be exam-

ined in terms of energy efficiency. Free et. al. [?] di-

vide the trace files into blocks whereat a block is a set

of executed statements demarcated by MPI operations

and memory pressure3 changes. Two adjacent blocks

are merged into a phase if their corresponding mem-

ory pressure is within the same threshold. They exe-

cute each phase with different DVFS settings and select

the right setting based on a user-weighted energy-time

trade off. Hotta et. al [?] use the same approach, but

they use the EDP (Energy Delay Product) as the metric

3 Memory pressure changes are indicated by L3 cache misses
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for selecting the right setting. Further they instrument

their application manually into phases.

To identify the (low utilization) phases it is also pos-

sible to monitor performance counters [?], to analyze

the current MIPS of the processor [?] or to perform an

interval based workload characterization based on pro-

cessor stall cycles due to off-chip activities [?]. There

are many further approaches for phase-detection, but

this is out of the scope of this work.

2.1 ADIOS Interface

The Adaptable IO System (ADIOS) [?,?] provides an

abstract I/O API and library, which decouples appli-

cation logic from the actual I/O setting. Several best

practices are realized within the ADIOS library to in-

crease usability and performance, for instance aggres-

sive write-behind is performed, and MPI collectives trans-

fer file information to decrease the burden on metadata

servers.

By using the API the developer specifies the vari-

ables and attributes which should be accessed in an

XML file, a tool generates C or Fortran code to call the

library. Each write call is annotated in ADIOS with

names which can be referred to in the XML file. The

amount of data accessed, datatype4 and further at-

tributes are defined in the XML.

The I/O interface and parameters for file access to

perform the actual I/O are selected in the XML file,

too. Available modules include NetCDF, HDF5, MPI

(collective or independent), POSIX and several asyn-

chronous staging modules. Settings can be defined with-

out changing code, for example, the buffer size can be

altered. An advantage of the decoupling of the underly-

ing I/O procedure is that the best fitting implementa-

tion can be selected for a group of files – on one system

the POSIX interface shows best performance, while on

another system the MPI module is advantageous. It is

also possible to specify the NULL method which dis-

cards I/O.

Moreover, data could be forwarded to a visualiza-

tion system – even multiple I/O methods can be se-

lected to visualize and store data at the same time. Sim-

ilar to SIONlib, the system is capable to either write a

shared file or to split logical I/O into several file system

objects, therefore, the new BP file format is proposed.

ADIOS ships tools to edit and convert BP files into

HDF5 and NetCDF files.

The API provides functions to the programmer to

indicate when the computation starts or ends, or where

4 Elementary datatypes and arrays of arbitrary dimension are

supported.

the scientific application main loop occurs (adios end

iteration()) to indicate the speed of an iteration. On

the one hand, this enables efficient write-back of data

to the servers without disturbing application commu-

nication, on the other hand the pace in which data is

created and written back is announced to the library.

Concluding, ADIOS provides a completely new API in

which the programmer is forced to deal with I/O re-

lated aspects consciously – but due to the XML system,

optimizations are possible without source code modifi-

cations.

In listing 1 an MPI example is sketched in which an

iterative algorithm loops through computation, com-

munication (here MPI Barrier()) and then writes the

computed results into the file “testfile.bp” – the data

types are defined in the group “fullData”. Accessed

data is a 3-dimensional matrix, the dimensions are de-

fined in the NX, NY and NZ variables respectively. The

write calls to store one iteration of the data are auto-

matically generated from the XML file by a tool (see

listing 2). Once every 5 iterations a checkpoint is writ-

ten which contains also the whole data – for simplicity

the same data is written in this example, in a more real-

istic example the checkpoint would contain all variables

needed to restart the application.

Listing 3 shows the XML file which defines two

I/O groups, the ”fullData“ group contains a time-series

and the variables NX, NY, NZ and the matrix. An at-

tribute describing the data in more detail is also given.

Datatypes of each variable and the corresponding names

in the file and the C code (gwrite attribute) are de-

fined. ADIOS is capable to automatically generate his-

tograms from the data – the histogram is generated for

each stored group, in our case for each timestep of the

full matrix, this can be done by specifying the analy-

sis tag in the XML file, again without recompiling the

application. For each group the I/O method is defined,

here both, the ”checkpoint“ and “fullData” group use

the MPI backend, we could replace that with POSIX

or NULL to discard all I/O. In the last tag the size of

the write-behind buffer is given.

Listing 1 Sketched ADIOS code

1 #include <stdio.h>

2 #include <string.h>

3 #include "mpi.h"

4 #include "adios.h"

5

6 int main (int argc , char** argv) {

7 int rank , size , i, j, k, t;

8 int NX = 10, NY = 10, NZ = 100;

9

10 double matrix[NX][NY][NZ];

11

12 MPI_Comm comm = MPI_COMM_WORLD;

13

14 int adios_err;

15 uint64_t adios_groupsize , adios_totalsize;

16 int64_t adios_handle;

17

18 MPI_Init (&argc , &argv);

19 MPI_Comm_rank(comm , &rank);

20

21 adios_init("example.xml");
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4

22

23 for (t = 0; t < 10 ; t++) {

24 adios_start_calculation ();

25 /* computation */

26 adios_stop_calculation ();

27

28 /* MPI communication */

29

30 adios_open (& adios_handle , "fullData", "testfile.bp", t == 0 ?

↪→ "w": "a", &comm);

31 #include "gwrite_fullData.ch"

32 adios_close(adios_handle);

33

34 if (t == 5) {

35 adios_open (& adios_handle , "checkpoint", "testfile.bp", "a",

↪→ &comm);

36 #include "gwrite_checkpoint.ch"

37 adios_close(adios_handle);

38 }

39

40 /* indicate progress for write -behind */

41 adios_end_iteration ();

42 }

43

44 adios_finalize(rank);

45

46 MPI_Finalize ();

47

48 return 0;

49 }

Listing 2 ADIOS example code – gwrite fullData.ch

1 adios_groupsize = 4 \

2 + 4 \

3 + 4 \

4 + 8 * (NX) * (NY) * (NZ);

5 adios_group_size (adios_handle , adios_groupsize , &adios_totalsize);

6 adios_write (adios_handle , "NX", &NX);

7 adios_write (adios_handle , "NY", &NY);

8 adios_write (adios_handle , "NZ", &NZ);

9 adios_write (adios_handle , "matrix_data", matrix);

Listing 3 ADIOS example code XML file

1 <?xml version="1.0"?>

2 <adios -config host -language="C">

3 <adios -group name="fullData" coordination -communicator="comm"

↪→ time -index="iteration">

4 <var name="NX" type="integer"/>

5 <var name="NY" type="integer"/>

6 <var name="NZ" type="integer"/>

7 <attribute name="description" path="/fullData" value="Global array

↪→ of memory data" type="string"/>

8 <var name="matrix_data" gwrite="matrix" type="double"

↪→ dimensions="iteration ,NX ,NY,NZ"/>

9 </adios -group>

10

11 <analysis adios -group="fullData" var="matrix_data" min="0"

↪→ max="3000000" count="30"/>

12

13

14 <adios -group name="checkpoint" coordination -communicator="comm">

15 <var name="NX" type="integer"/>

16 <var name="NY" type="integer"/>

17 <var name="NZ" type="integer"/>

18 <var name="matrix_data" gwrite="matrix" type="double"

↪→ dimensions="NX ,NY,NZ"/>

19 </adios -group>

20

21 <method group="fullData" method="MPI"/>

22 <method group="checkpoint" method="MPI"/>

23

24 <buffer size -MB="80" allocate -time="now"/>

25 </adios -config >

3 CIAO Interface

The CIAO interface and library extends ADIOS in some

important aspects, specifically computation phases and

communication phases are now annotated by the user.

Further it stretches the concept of so-called phases into

named phases. A phase is a sequence of code with one

goal specified by its label, repeated invocations of the

same phase should show similar characteristics in re-

spect to computation, I/O and communication. Depend-

ing on the bottleneck, phases are classified into com-

putation bound, I/O bound or communication bound.

CIAO also should maintain information to characterize

the phase, that is, the demand on CPU, network and

I/O resources and the estimated length of the phase.

More information about the characterization of phases

is found in section 3.2.

The original ADIOS only provides the adios end

iteration() function to indicate the end of an iter-

ation. Obviously, this only works for application with

very regular iterations. Doing pre-processing, post-pro-

cessing or checkpointing every n iterations can not be

handled in this way. Introducing phases allows the li-

brary to make better predictions by delivering more

information about the application’s structure. For ex-

ample, the library could detect that every n-th iteration

a checkpoint is written. This could be used to do write-

behind over the next n iterations if no communication

is happening at the same time.

Calculation and I/O is associated with exactly one

phase. The calculation phase is indicated with the new

function ciao start calculation(), which takes the

phase name as its only argument. The I/O phase is in-

dicated implicitly by using the group name provided

in the appropriate ciao open() call. The ciao open()

and ciao close() functions are just thin wrappers around

the ADIOS counterparts.

Because the end of the iteration can be detected

by using the calculation phase, this also makes it pos-

sible to remove the need for adios end iteration().

That is, whenever a previously seen calculation phase is

entered again, the iteration has ended. With the calcu-

lation and I/O phases potential communication phases

are implicitly derived.

Listing 4 shows the application from listing 1 mod-

ified to use the CIAO interface. In lines 3–5, ciao

open() and ciao close() are used read the input data.

ciao start calculation() and ciao end calculation()

is used in lines 7–9 to indicate that some form of calcu-

lation is happening during the pre-processing phase.

In line 12, adios start calculation() is replaced by

ciao start calculation() to signify the start of the

iteration phase. This phase is then ended by ciao

end calculation() in line 14. Communication phases

are indicated by ciao start communication() and end

respectively. By using the additional knowledge pro-

vided by the ciao open() calls in lines 20 and 25 it

is possible to handle these I/O operations more effi-

ciently. The code blocks on lines 31–33 and 35–37 work

analogous to the input and pre-processing blocks.

Listing 4 CIAO example code

1 adios_init("example.xml");

2

3 ciao_open (...);

4 /* read input */

5 ciao_close (...);

6

7 ciao_start_calculation("pre -processing");
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8 /* pre -process input */

9 ciao_end_calculation ();

10

11 for (t = 0; t < 10 ; t++) {

12 ciao_start_calculation("iteration");

13 /* computation */

14 ciao_end_calculation ();

15

16 ciao_start_communication("exchange -neighbour");

17 /* communication */

18 ciao_end_communication ();

19

20 ciao_open (& adios_handle , "fullData", "testfile.bp", t == 0 ? "w":

↪→ "a", &comm);

21 #include "gwrite_fullData.ch"

22 ciao_close(adios_handle);

23

24 if (t == 5) {

25 ciao_open (& adios_handle , "checkpoint", "testfile.bp", "a", &comm);

26 #include "gwrite_checkpoint.ch"

27 ciao_close(adios_handle);

28 }

29 }

30

31 ciao_start_calculation("post -processing");

32 /* post -process output */

33 ciao_end_calculation ();

34

35 ciao_open (...);

36 /* write output */

37 ciao_close (...);

38

39 adios_finalize(rank);

3.1 Triggered Activity by the Library

The relation between the phases and potentially trig-

gered activity of CIAO is shown in table 1.

During an I/O phase data is either read or written,

in case data is read, then the actual data must be re-

quested from the (parallel) file system. ADIOS aims to

cache write operations to enable write-behind during

the iterative computation phase – during a computa-

tion bound phase the network is not utilized, thus the

data can be staged to the I/O servers. In case the buffer

does not suffice to keep all data, then it is forced to ac-

tually write data in the I/O phase, thus communication

to the servers is needed.

When a communication phase starts, that is, no
computation happens, then all background activity must

pause until the communication phase completes – this

ensures that communication bandwidth is available to

potential communication activity.

CIAO exploits this information by triggering energy

modes of (un)required devices for a phase. During com-

munication and I/O phases usually the CPU is not uti-

lized to a high extent, thus, the frequency could be re-

duced via DVFS. ADIOS aggressively caches data for

write-behind and tries to write-out data during com-

putation phases, once the data is staged on the I/O

servers NICs and I/O devices could be put into an en-

ergy saving mode (often energy saving modes are also

referred to as ACPI Device Power States).

For devices such as disks and NICs of some network

technology which require seconds to change states it

is important to estimate the benefit before the state

change is triggered. Therefore, the time until the device

is needed again must be approximated and indicated

by CIAO. More details about how CIAO fosters energy

efficiency are provided in section 5.

3.2 Characterization of Phases

In order to control the devices appropriately charac-

teristics of phases must be available in CIAO. Two

kind of phases can be distinguished: a regular phase

shows very predictable characteristics and varies only

slightly, thus it can be estimated easily by using little

historic knowledge, for example just using the last char-

acteristics might be a very good approximation. How-

ever, irregular phases reveal major differences in their

characteristics depending on the state of the program.

For instance, this could be caused by repartitioning of

the workloads in finite element methods or by load-

balanced applications.

There are two methods to tackle this issue, either

the user provides hints to the characteristics or CIAO

detects characteristics by itself. The former requires the

user to carefully indicate bottlenecks and thus bears a

burden to the user. The latter is problematic for irreg-

ular patterns, because there is a magnitude of potential

patterns. Thus, we propose that the user can provide

hints to CIAO via the XML file to indicate the esti-

mation module which is used for approximation. Those

hints could be embedded into the ADIOS XML as il-

lustrated in listing 5 – for each phase the estimation

method is selected. General characteristics of the esti-

mation are specified as attributes of the estimation tag.

To estimate valuable switches CIAO must not under-

stand the cost for switching between states of the hard-

ware, however, this information must be available (for

example in the eeClust daemons). Thus, CIAO just tells

the daemons an estimate for the duration in which a re-

source is not used and how much performance is needed,

then the daemon switches the device states if profitable.

It is possible to compute the threshold within CIAO,

though.

Several modules are envisioned, to give an impres-

sion: a NULL module which does not trigger any back-

ground operation and prohibits to change into energy

saving states. This avoids estimates in case almost ran-

dom behavior is expected. The MIN module measures

the duration and uses the minimum time observed dur-

ing the runtime as an estimate for the future duration.

Thus, MIN is useful for regular patterns and it tries

not to overestimate characteristics. With HISTORIC

statistics are stored into a file (or database) and are

reused for subsequent invocations of the program, sim-

ilar to profile-guided-optimization. This is very useful
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6

if an application is run repeatedly with similar param-

eters.

With the debug attribute, statistics or debugging

information of the phases can be printed at program

termination, it is also possible that a module warns the

user if the assumption provided in the XML file do not

hold, that is, the historic knowledge does not match the

observations.

Fast transitions between phases bear a problem to

the interface, as the I/O and energy hints change rapidly

which causes overhead and prohibits switching of en-

ergy metrics. This could also be mitigated by wrapping

the medium-grained phases into larger phases including

the bottlenecks5. In our example for instance, both, the

checkpointing and iterative write-out could be wrapped

into ciao start io() and ciao end io(), this way the

indicated energy hints could be reduced. Also, char-

acteristics for the projected sequence of phases could

be estimated guided by the transitions between phases.

Those inter-phase statistics could be handled by addi-

tional modules, a STOCHASTIC module for instance

could estimate the probability for transitions to other

phases and if the phases transits to another phase in

more cases than specified in the threshold, then the

transition is performed and lengthens the current phase.

There is much literature available in which the es-

timation of application runtimes is investigated with

historic knowledge, for instance in [?,?]. Also, machine

learning has been applied to provide better estimates

of future invocations. Several approaches exist to merge

phases together, however, in contrast to our proposed

extension they are all built either on artificially intro-

duced “phases” or onto new interfaces, and are not part

of an approach which is especially designed to improve

I/O performance. Thus, all those mechanisms could be

integrated into CIAO.

Listing 5 CIAO XML snippet specifying phase estimators

1 <adios -config host -language="C">

2 ...

3 <buffer size -MB="80" allocate -time="now"/>

4 ...

5

6 <estimation debug="statistics">

7 <inter -phase method="STOCHASTIC" accept -threshold="95%">

8 <phase name="iteration" method="MIN"/>

9 <phase name="post -processing" method="HISTORIC"/>

10 <estimation/>

11 </adios -config >

4 Benefit for Analysis Tools

The concept of phases allows usability improvements in

trace analysis tools like Sunshot, Vampir or gprof. The

5 Remember that it is allowed to perform little communication

and/or computation in all phases.

CheckpointingIter Iter Iter

Rank 0

Rank 1

Rank 2

Rank 3

Power

Fig. 1 Tracing MPI activity and node power consumption.

phases can be integrated into the traces and then used

by the respective tool to present a more user-friendly

output. For example, figure 1 shows the visualization

of an application as produced by the tool Sunshot. As

can be seen, the vertical lines show the beginning (and

end) of each iteration. Additionally, a checkpointing

phase can be observed. This information can be added

automatically using the knowledge of the application’s

phases as recorded by the CIAO interface.

It is also possible to use the additional informa-

tion to reduce noise when analyzing traces. Because the

length and structure of each phase is known, (mostly)

identical iterations can be skipped, showing only de-

viant ones to the end-user. For example, this can be

useful when analyzing load imbalances, because it al-

lows the user to concentrate on the interesting parts of

the trace without having to manually find them.

In tools which analyze code metrics such as time,
hardware counters or energy metrics the instrumenta-

tion of phases enables to aggregate those metrics within

certain phases. Further, phases could be analyzed with

statistical methods. For instance profiling tools like gprof

could visualize the time spent in each phase (see list-

ing 6).

Some performance analysis tools already offer the

capability to identify repeated phases and cluster data,

yet they usually do this by looking at the hardware

counters and/or function invocation order. The named

phases introduced with CIAO are provided by the user

and thus allow clustering on a higher abstraction with

semantics defined by the user, yet the user must not

instrument the library just for the purpose of perfor-

mance analysis.

Listing 6 Proposed gprof output

1 Phase profile

2

3 Overview

4 % cumulative self self

5 time seconds seconds calls s/call phase name

6 60.08 48.06 48.06 10 4.80 iteration
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Table 1 Process phases and triggered activity.

Phase bottleneck I/O activity Network activity Potential energy savings

Computation – Write-behind to I/O servers I/O and NIC
Communication – – I/O and CPU

Input/Output Access data and/or buffer data Read data if necessary CPU and NIC

7 20.02 64.08 16.02 2 8.01 checkpoint

8 10.04 72.11 8.03 10 0.80 exchange -neighbour

9 8.02 78.53 6.42 1 6.42 post -processing

10 1.80 79.97 1.44 1 1.44 pre -processing

11 0.04 80.00 0.03 - 0.03 [unlabeled]

12

13 Phase "iteration"

14 % cumulative self self total

15 time seconds seconds calls s/call s/call name

16 69.37 33.33 33.33 10 18.62 33.33 calculateValues

17 30.63 48.06 14.72 10 14.72 14.72 calculateOffset

18

19 Phase "checkpoint"

20 % cumulative self self total

21 time seconds seconds calls s/call s/call name

22 100.00 20.02 20.02 2 20.02 10.01 writeMatrix

23 ...

5 An Interface Fostering Energy Efficiency

From an energy efficiency point of view the additional

information provided by the developer can be used to

make better decisions when setting hardware device

states. For example, spinning up and down hard disk

drives takes a considerable amount of time. Their en-

ergy consumption is also higher during this period. Thus,

it only makes sense to do this if they are not used for

an extended period of time.

Using the knowledge of the application’s phases, it

is possible to predict whether possible actions are ben-

eficial or not. A major goal is to identify the phases

where switching to low power modes is profitable – for

example in case of device idleness, memory-boundness

or busy-waiting. The energy consumption to turn into

another energy saving mode and to transit into the

required mode for the next phase must be computed

and compared with the savings during a phase – if the

latter dominates, then switching energy saving mode

is advisable. In brief, the minimal power consumption

without reducing the time to complete the operation

is searched – components only switch to a lower en-

ergy saving mode if the component utilization is below

a certain threshold and can be woken up before more

performance is required.

The decision whether a component switches to an-

other energy saving mode depends on different factors:

The duration of the phase, the power saving potential

of the state change (Pdiff , difference of power consump-

tion between power saving states), the duration of the

state change (tchange, which is the time to switch to the

better energy saving mode of this phase and the en-

ergy saving mode required by the next phase) and the

energy of the state change (Echange, the sum of both

changes). Note that in case the saving mode of the next

state can not be anticipated, then the maximum per-

formance state must be chosen. With these values the

minimal duration of the phase tphase can be calculated,

for which switching energy saving mode is advicable

(see equation 1). In case the selected mode matches the

requirements of the phase, that is, if CIAO manages to

estimate the performance demand correctly, then those

transitions do not increase wall-clock time. Some more

details about changing states are available in [?].

tphase =
Echange

Pdiff
+ tchange (1)

The identification of phases is partly addressed by

the developer, who indicates the areas of demand with

CIAO, which estimates the duration and characteris-

tics of those phases. If CIAO detects that during an

I/O phase only buffered writes happen, then the disk

can still be off during that phase, while an I/O phase

which performs read operations will need an active I/O

subsystem. Also, with the knowledge of the phases it is

possible to reduce performance of the components ac-

cording to the demand, for example, the CPU frequency

while checkpointing [?].

With profund knowledge about the future phases

(as discussed in section 3.2) characteristics of those

could be incorporated into the calculation. As this would

lengthen the time in which devices are not required with

maximum performance this knowledge would enable to

control devices even better.

5.1 Saving Energy by Controlling Hardware

To identify the general power saving potential, we mea-

sured the hardware of our power-aware cluster in mul-

tiple operating and idle states. Our cluster consists of

five dual socket Intel Nehalem (Xeon X5560, 4 cores

+ Hyperthreading) and five dual socket AMD Magny-

Cours (Opteron 6168, 12 cores) computing nodes. Each

of the processors is DVFS enabled and supports mul-

tiple performance states (P-States) and idle states (C-
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Fig. 2 Idle power consumption for Opteron and Xeon nodes de-

pending on hardware device states.

States). Further the hard disks6 and the network in-

terface cards7 of each node support transitions to low

power or reduced performance states (D-States). Addi-

tionally, the cluster has two I/O subsystems with five

disks, one with HDDs and one with SSDs. The com-

putation nodes and the I/O nodes are connected with

Gigabit Ethernet. To measure the power consumption

of the hardware, each node and the Gigabit switch are

connected to ZES LMG450 high precision power meters

with a accuracy of about 0.1 %. The power consump-

tion of each node is stored in a database on the head

node, to whom all power meters are connected via serial

ports.

Figure 2 visualizes the measured power savings for

our specific hardware for an idle node [?]. For the Opteron

nodes, we can save up to about 11 % power while we

can save about 18 % with the Xeon nodes. Switching

the device state of network card and disk result in a

decreased power consumption of about 6 % compared

to using only frequency scaling. Adjusting the proces-

sor frequency only seems to be promising in phases of

load imbalance, MPI communication, I/O or memory-

boundness, because the performance decreases faster

than the energy-efficiency increases. This should be even

more the case for the network card, because the power

consumption decreases to 40 % percent while the speed

decreases to 10 % (when switching from 1000 Mbit to

100 Mbit, switching to 10 Mbit is even worse, see ta-

ble 3). Entering the sleep state of the disk makes sense

only if the disk is idle for a longer period of time. Un-

fortunately, there are only two sleep states (standby

and sleep) supported, yet. But when entering the sleep

6 http://www.seagate.com/staticfiles/support/disc/

manuals/desktop/Barracuda%207200.12/100529369b.pdf
7 http://download.intel.com/design/network/datashts/

82574.pdf

Table 2 Seagate Barracuda ST3500418AS Power Consumption.

Mode Power (W)

Idle 5.0
Operating 6.57

Standby 0.79

Sleep 0.79

Table 3 Intel 82574 NIC Power Consumption.

Speed (Mbit/s) Power active (mW) Power idle (mW)

1000 878 642
100 351 190

10 416 167

no link - 44

Table 4 Transition times.

Transition Time (milliseconds)

CPU P-State 0.01

NIC Speed 4000
Disk Spinup 8500

mode, the disk can reduce its power consumption to

about 18 % (see table 2).

Table 4 shows the transition times of the manage-

able devices. Each P-State transition of the processor

takes about 10000 nanoseconds as estimated by com-

mon operating systems. A speed change of the network

card results in a transition time of about 4 seconds,

independent of the concrete transition. The transition

time for the disk is even higher, about 8.5 seconds.

Taking the device state power consumption and the

transition time into account, energy savings with slight

performance degradation is possible for HPC applica-

tions as shown in recent works [?,?,?,?].

6 Conclusion and Future Work

In summary, it is safe to say that high-level interfaces

like ADIOS and CIAO offer great possibilities to pro-

vide even better support for trace analysis and energy

saving while requiring very little additional work from

the application developers. A huge portion of the nec-

essary information can be inferred from the normal

ADIOS and CIAO calls. With the extensions to mark

computation and communication dominant phases back-

ground I/O activity could be scheduled even more effi-

ciently than with ADIOS.

A future goal is to modify the ADIOS interface to

support the proposed CIAO extensions. The prelimi-
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nary work described in this paper is just a first step

towards integration. Proposed extension would make it

possible to use energy-saving mechanisms like those de-

veloped by the eeClust project without additional in-

strumentation. Further research to automatically de-

tect phase transitions and for phase characterization

can be inferred from existing projects and integrated

into the system.
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