
Noname manuscript No.
(will be inserted by the editor)

Simulating Parallel Programs on Application and System Level

Julian M. Kunkel

Received: date / Accepted: date

Abstract Understanding the measured performance

of parallel applications in real systems is difficult – with

the aim to utilize the resources available, optimizations

deployed in hardware and software layers build up to

complex systems. However, in order to identify bottle-

necks the performance must be assessed.

This paper introduces PIOsimHD, an event-driven

simulator for MPI-IO applications and the underlying

(heterogeneous) cluster computers. With the help of

the simulator runs of MPI-IO applications can be con-

ducted in-silico; this includes detailed simulation of col-

lective communication patterns as well as simulation of

parallel I/O. The simulation estimates upper bounds

for expected performance and helps assessing observed

performance.

Together with HDTrace, an environment which al-

lows tracing the behavior of MPI programs and inter-

nals of MPI and PVFS, PIOsimHD enables us to local-

ize inefficiencies, to conduct research on optimizations

for communication algorithms, and to evaluate arbi-

trary and future systems. In this paper the simulator is

introduced and an excerpt of the conducted validation

is presented, which demonstrates the accuracy of the

models for our cluster.

Keywords Simulation · Tracing · MPI-IO

1 Introduction

Understanding hardware and software performance is

the foundation for optimizing application and system

Thanks to Nathanel Hübbe for reviewing this paper.

Julian M. Kunkel
University of Hamburg
E-mail: kunkel@informatik.uni-hamburg.de

behavior. In order to gain insight into system and ap-

plication behavior either all activity can be recorded

and analyzed, or modeled and simulated. Visualizing

the real system activity helps analyzing the behavior

and to localize regions that require most of the execu-

tion time. However, in many cases the reason for the

observation cannot be identified. Further, determining

whether a recorded activity is conducted optimally is

not possible because it depends on the system and hard-

ware configuration.

Efficiency depends on the system characteristics –

the characteristics of basic components: network, stor-

age and compute nodes – the topologies of all intercon-

nects, the system’s algorithms for communication, I/O

and the configuration done by administrator and user.

It is not an easy task to understand the interplay

between all hardware characteristics. Unfortunately,

mechanisms designed to optimize the system make it

even harder to assess achieved performance and relate it

to the system’s capability: An MPI implementation pro-

vides several collective algorithms which should achieve

good performance on the underlying hardware. Further,

collective I/O can improve performance by manipulat-

ing and scheduling the I/O requests of all processes.

Therefore, theoretic models of the system behav-

ior are needed to assess the observed behavior. Mod-

eling and simulation approximates performance and,

therefore, estimates performance gains of optimiza-

tions. With the help of simulation the application be-

havior could also be projected to an extended or future

system before such a new system is built. During the

design of the new system such an evaluation can guide

development to avoid later disappointments.

This paper is organized as follows: In Section 2 the

state-of-the-art in simulation of compute clusters is pre-

sented. More details about the simulator and the under-

The final publication is available at Springer via http://dx.doi.org/10.1007/s00450-012-0208-2
1/9



2 Julian M. Kunkel

lying hardware and software models are given in Sec-

tion 3. In Section 4 the performance of the simulator is

assessed. The validation methodology of the simulation

model is presented in Section 5. Section 6 concludes the

paper and presents possible future analysis which can

be conducted with the simulator.

2 State of the art

Recording of trace information in post-mortem perfor-

mance optimization is state-of-the-art to localize per-

formance bottlenecks. Popular performance analysis

tools are Tau [9], Vampir [5] and Scalasca [1]. However,

MPI internals and I/O activity are usually hidden from

available trace environments. With HDTrace collective

operations can be traced, as well as client and server

activity in the PVFS file system [7]. In addition to the

improved possibility to localize the cause of an observa-

tion, HDTrace allows assessing of simulation results by

comparing them to observations on real systems. This

allows us to validate, and to adapt and refine the mod-

els.

There are many simulators for distributed systems;

a few that are closely related to the work of this paper

are introduced in the following. In [3] trace information

is altered, then an MPI program replays the modified

trace on the original machine, which automatically en-

forces causality between dependencies among proces-

sors. While this approach scales well, it is not possible

to simulate other hardware configurations or to gain in-

sights into MPI. Analytical models for message passing

like logxP [10] allow to predict performance, however,

neither network collisions nor I/O is modeled. LogGOP-

Sim [4] is a simulator for this class of models. It supports

a simple network collision model. Dimemas [2], a simu-

lator, reads trace files and applies an analytical model

to individual and collective communication. Network

collisions are modeled in an abstract way by limiting

the maximum throughput which can occur at a given

time over a central network infrastructure.

The Structural Simulation Toolkit (SST) [8] aims to

provide a parallel event-driven simulator to simulate

memory, computation, network and I/O at arbitrary

levels of abstraction from instruction level to analytical

models. To accomplish this goal it provides a modular

framework and interfaces with many existing simula-

tors. Besides performance, SST estimates parameters

for power, energy, area, costs and reliability. Currently,

no parallel I/O is simulated. To simulate single disk ac-

tivity DiskSim is adapted and incorporated into their

source tree.

In contrast to the introduced systems, PIOsimHD

covers parallel I/O and allows replay of recorded MPI

traces on a high level of abstraction – commands are

implemented in the simulator to react on system con-

ditions. The event-driven nature of PIOsimHD allows

localization of network congestion and to evaluate I/O

optimization on client, server or disk side. With its help

an analysis of several I/O schedulers and collective I/O

variants has already been performed in [6]. However,

that paper lacked a detailed description of the simu-

lator and a validation of the hardware and software

models.

3 PIOsimHD

PIOsimHD is a sequential discrete event simulator writ-

ten in Java. Its goal is to assist MPI(-IO) research and

to foster understanding of performance factors in clus-

ters. Arbitrary network topologies can be created and

relevant characteristics of the components can be ad-

justed freely. The specification of the model can be ei-

ther explicitly programmed or read from an XML file.

Internally, a discrete event simulator processes

events which are stored in a queue and sorted by start

time, a global clock for the model time is incremented

according to the start time of the next event [11]. An

event itself can create new (future) events. Output from

the simulation can be stored in trace files and compared

to the original run.

Due to limited space, underlying model concepts are

only explained briefly.

3.1 Hardware Model

The hardware model reflects the common sense of a

cluster computer. Several compute resources (CPUs)

are hosted on a node which is connected to one or sev-

eral networks via a network interface (NI). On each

node one I/O server can be placed. Each holds a

cache layer, which schedules operations, and an I/O-

subsystem. A network topology defines how network

edges are connected to intermediate nodes. Any net-

work graph can be created.

Each component implementation uses characteris-

tics to simulate hardware behavior. To cope with sev-

eral levels of abstraction a component can have several

implementations. During the model specification the

concrete model and its characteristics can be selected

individually for each component. Usually, characteris-

tics are provided in vendor specifications or obtained

by benchmarking the existing system.

The current level of detail of the cluster hardware

is as follows: A Node has an amount of memory and

number of CPUs. Each CPU processes a fixed number

2/9



Simulating Parallel Programs on Application and System Level 3

of instructions per second. Right now, the memory is

used only for caching I/O on the server side. CPU time

is shared equally among all processes in timesharing

manner. A CPU is the only component which shares

available resources among all pending jobs, all other

components process jobs sequentially – usually in the

order they were submitted. Network edges have a la-

tency and a transfer rate. Network nodes have a max-

imum bandwidth to relay data, and represent store-

and-forward systems. With the help of network com-

ponents memory access of communication can be simu-

lated. This permits to model local communication. The

StoreForwardMemoryNode adds the local throughput

as an additional parameter, which is used when two di-

rect neighboring components of this network node ex-

change data. An example model of a dual-socket node

is given in Figure 1. Multiple nodes are interconnected

by a central switch. In this figure, throughput and la-

tency of all network components are given as observed

on our Intel Westmere cluster consisting of 10 nodes.

A hard-disk as an I/O-subsystem is modeled by a

sequential transfer rate, an average access time, track-

to-track-seek time and RPM. Each file is assumed to be

stored sequentially on disk. Depending on the distance

to the last byte accessed within the file, a disk will either

perform no seek, will seek to the neighboring track or

will apply the average access time. Access to other files

always enforces an average seek.

3.2 Network Communication

One non-functional requirement to the simulator is to

provide approximate best-cases for data transport over

the network, but on the other hand results should be re-

alistic. For example, a bottleneck in the network should

not cause packets to pile up on its input. In the past we

evaluated several transport algorithms – mechanisms

like wormhole routing or buffering with packet dropping

are not capable of saturating a network completely in

case of a network bottleneck.

Therefore, a network flow model was designed in

which messages are fragmented into packets of a maxi-

mum size, which flow from source to target in a stream.

When data is transferred from one component to an-

other, then the transmission of incoming data flows is

continued. Fragmentation into chunks is done by the

NI, which are then routed through the network individ-

ually. While a packet is on its path through the network

graph, each intermediate node decides which outgoing

edge will be used depending on a routing algorithm.

Currently, packets can be either routed on the shortest

path or distributed in a round-robin fashion to neigh-

bors with the same distance to the target.

On each component the status of the flow between

every source and all target nodes in the network is

maintained, that is a single stream for every commu-

nication pair is kept. The maximum number of packets

in flight for every stream is limited by the bandwidth-

delay-product of the given link. While many concepts

can be found in real systems, the data flow differs be-

cause it achieves the highest utilization of all network

components for all streams, and it does not throw pack-

ets away.

3.3 Software Model

PIOsimHD allows execution of programs conforming to

the MPI standard. Asynchronous communication and

collective operations of MPI-3 are supported. To simu-

late the execution of a particular MPI function at least

one implementation must be provided within the simu-

lator. Internally, each MPI function is programmed as

a state machine consisting of states (steps) and tran-

sitions. A state can issue a set of blocking send and

receive operations, or spawn multiple child state ma-

chines, to allow concurrent data transport between mul-

tiple endpoints. An arbitrary instruction number can be

added to each state to simulate computation. Multiple

implementations for a given MPI function can be pro-

grammed and selected in the model specification (sev-

eral collective calls are already implemented).

The state machine has a global view of the simula-

tion, i.e. it is possible to see the state of other clients.

For instance, this global world view allows implement-

ing MPI Barrier() without network communication at

all – once all clients invoked the barrier the collective

call finishes.

An abstract parallel file system defines how client

and server interaction takes place. File data is parti-

tioned among all servers as defined by a selectable dis-

tribution function. Metadata operations are not consid-

ered. Clients and servers interact in a similar fashion to

the PVFS model, but the concept is universal to most

parallel file systems: To write data, a client requests a

write operation from the server and then starts to trans-

fer all data. In the simulator file sizes are updated once

a write operation finishes. Non-contiguous I/O requests

are supported. It is also possible to add I/O forwarders

to a client. A forwarder is responsible to relay data to at

least a single I/O server. All data between this partic-

ular client and server is then routed via the forwarder.

3/9



4 Julian M. Kunkel

3.4 Simulation Workflow

In general, there are two ways to increase insight in

the interplay between system and application with

PIOsimHD : either a running application is instru-

mented to generate trace files or the communication

and I/O behavior can be coded explicitly in the form

of Java programs. In the latter case helper classes allow

explicit programming of a cluster model and applica-

tion behavior. This can be used to perform small tests

of I/O systems or MPI-internal communication.

An MPI-wrapper is linked into instrumented ap-

plications which intercepts all MPI-IO activities with

the PMPI interface and records these events. If PVFS

is used as the underlying file system, then additional

traces for client and server activities can be included

by using the instrumented version offered by HDTrace.

Traces of the application and optionally PVFS can

be visualized using the graphical viewer Sunshot. To

perform simulation a model must be created by the

user that describes the cluster, and the mapping of the

processes to available nodes. Note that the user can sim-

ulate concurrent processing of multiple applications at

the same time to stress network and I/O infrastructure.

Model classes read this model and the application trace

files that are required for simulation, and offers these

as command classes to the simulator. PIOsimHD per-

forms the discrete event simulation and, if requested,

stores the processing as trace files. Results of simula-

tion can then be visualized by Sunshot, which enables

a comparison of the recorded process and file system

activities and simulation results.

4 Performance of the Simulator

Time to conduct a simulation depends on the model

initialization and the event processing by the simulator

core. To assess the performance a few experiments have

been conducted on a laptop equipped with an Intel i7-

640M (2.8 GHz). The laptop runs under Ubuntu 11.10

(64-bit) and OpenJDK 1.6 23 (IcedTea6 1.11pre).

Since the processor supports Intel’s Turbo Boost

technology, which could effect shorter experiments, the

CPU governor is set to userspace and the frequency is

fixed to 2.8 GHz.

Experiments are encoded in Java and use builder

classes to set up the system model. All tests rely on the

introduced system model with a StoreForwardMemo-

ryNode to model processor sockets.

This test measures the simulator performance of

inter-node communication, which is the basis for I/O

as well. Performance of I/O simulation is not analyzed

explicitly because measureable speed of simulated I/O

depends on the chosen cache layer and its implemen-

tation; for instance, processing of N operations has an

average-case complexity of O(N · logN) when using a

specific cache layer since it keeps operations in a heap

data structure in order to fuse them.

4.1 Speed of the Event Processing

To measure the speed of the event processing a simple

experiment is conducted: One process sends 100 GiB of

data to another one; both are hosted on a single node.

In the experiments the NIC model fragments data into

chunks of 100 KiB resulting in more than 10 million

processed events. On average 1.5 million events are pro-

cessed by the simulator per second if debugging calls are

commented out. The implementation of the simulator

uses asserts to check the correctness of parameters and

it offers debugging capabilities of the internal states.

The impact of removing debugging calls is tremen-

dous – with enabled debugging only about 45,000

events/s can be processed. Note that string process-

ing is very time consuming in Java, and the processing

of asserts needs some time, too (even if they are dis-

abled). Therefore, scripts are available that comment

out asserts and the invocations of debugging messages.

To evaluate the impact those scripts have been applied

to clean the code.

Therefore, once the model and simulator is verified

it is recommended to remove debugging calls from the

simulator. The impact of asserts is not measurable with

OpenJDK and those should be kept. Preliminary tests

with the JDK from Sun showed similar improvements,

but with this JDK disabling of assertions improved per-

formance, too.

Note that the speed of the simulator, which means

the number of events processed per second, is in the or-

der of state-of-the-art simulators such as the LogGOP-

Sim [4].

4.2 Scalability of the Simulator

To test the scalability an MPI Bcast() of 100 MiB of

data is performed with an increasing number of nodes;

each node hosts exactly one process. Both the time to

create the complex cluster model with a socket per node

and the time to execute the simulation are measured.

The implementation of the broadcast uses a binary tree

algorithm to distribute data among all processes.

The simulation of the network traffic is evaluated for

three cases: with the congestion model, with the analyt-

ical NIC and by transferring a single large packet. When

the congestion model is applied, the number of events

4/9



Simulating Parallel Programs on Application and System Level 5

<Node>

QPI

Socket #0

mem

<Process>
NI...

<Process>
NI

QPI

Socket #1

mem

<Process>
NI...

<Process>
NI

(a) Topology of a single node.

<Node>

10864 MIB/s

Socket #0

<Process>
...

<Process>
40 GiB/s

3427 MiB/s

Socket #1

48,000 MByte/s

71.9 MiB/s

3781 MiB/s 4556 & 3778 MiB/s
...

(b) Component throughput.

<Node>

Socket #0

<Process>
...

<Process>

0.038 µs 

Socket #1

19.9815 µs 

0.079 µs 

QPI

mem

NI

Switch

...

(c) Latency of edges.

Fig. 1: Schematic network topology of the cluster model. The topology is annotated with performance character-

istics for the working groups cluster. The memory node transfers messages faster between processes of the local

socket. Performance is given next to the uni-directional edge and inside the nodes.

depends on the message size and the network granular-

ity. The analytical NIC model reduces the number of

events because the route is computed once per packet.

Many other simulators use analytical models to com-

pute communication time. Therefore, by using a large

transfer granularity and the analytical NIC model a

similar setup is generated.

The number of simulated nodes and processes is in-

creased until the laptop can no longer handle the sim-

ulation. If more than 1024 processes are created, then

the amount of available memory will not suffice. This

means Java terminates with an out of heap memory er-

ror and with 1024 processes approximately 1.5 GiB of

main memory is filled up.

In Figure 2 the time to build the model with the

builder classes and to execute the broadcast operation

is listed. Since the number of components grows linear

with the increasing numbers of processes, the time to

build the model increases, too (see Figure 2a). Surpris-

ingly, building larger systems is a bit faster and with

1024 nodes, an average of 4.3 s are needed, for 128 pro-

cesses 0.92 s – the large system does not need 8 times

the amount of time for 128 processes. This is proba-

bly induced by the way the test is conducted: All con-

figurations are evaluated in a single by a loop. When

Java gets executed for every single configuration, that

means the test is not executed in a loop, then the time

doubles. The reason is probably the memory allocation;

larger configurations need approximately twice as much

memory as the previously run test. Therefore, half the

memory is already preallocated in a subsequent test.

Also the class loader fetches and prepares the Java byte-

code in the first iteration, which adds a bias to the first

experiment.

The total number of executed events roughly dou-

bles with the number of processes and so does the ex-

ecution time (see Figure 2b). Performance of the ana-

lytical model is higher by approximately a factor of 5.

When just a single packet is sent, then execution time is

much faster because the number of packets is decreased

by a factor of 1000 (compared to the transfer granular-

ity of 100 KiB).

Overall, building cluster model of 1000 processes

needs a few seconds and scales linearly with the number

of processes. The MPI Bcast(), which is basically the

transmission of 100 MiB of data for all processes takes

much longer (25 s) when an adequate network granular-

ity of 100 KiB is used. Since program execution requires

simulation of multiple commands, the time for building

the model is not so important. Further, to simulate a

large number of processes the appropriate configuration

of the simulation must be picked.

5 Validation

A careful validation of the hardware and software model

has been done for our cluster system. The conducted

experiments are described in this section, but due to

the page limits only an excerpt can be discussed1.

5.1 Parameterization

First, the conceptual cluster model must be parameter-

ized for the existing cluster. Therefore, several indepen-

dent micro-benchmarks are run, and results are com-

pared to ensure correctness of the benchmark. Vendor

information and theoretical considerations prove the va-

lidity of the observations.

Figure 1 shows the determined throughput and la-

tencies for the network components. Most values have

been determined with MPI point-to-point benchmarks;

1 The mentioned experiments are described and assessed in
the Ph.D. thesis of the author, which will be published 2012.

5/9



6 Julian M. Kunkel

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 1  4  16  64  256  1024

ti
m

e
 i
n
 s

# processes

Build phase

(a) Model build phase

 0.000976562

 0.00390625

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 1  4  16  64  256  1024

ti
m

e
 i
n
 s

# processes

Congestion model
Analytical model

Analytical model, large transfer granularity

(b) Execution

Fig. 2: Scalability of the simulated broadcast operation.

(a) MPI Allgather(), 10 KiB of data – local
communication.

(b) MPI Allgather(), 10 KiB of data – inter-node communication.

(c) MPI Scatter(), 10 MiB of data – local
communication.

(d) MPI Scatter(), 10 MiB of data – inter-node communication.

Fig. 3: Validation of collective communication. For a variable configuration of nodes and processes collective calls

are invoked with the same parameters and a fixed data size per process. Note the scaling of the y-axis.

(a) Observed behavior. (b) Simulated behavior.

Fig. 4: Trace excerpts for a PDE experiment.

6/9



Simulating Parallel Programs on Application and System Level 7

latency is measured with a Ping-Pong kernel transfer-

ring empty messages; throughput is determined with

large message transfers of a Ping-Pong and a bi-

directional SendRecv kernel. Performance of intra-

socket, inter-socket and inter-node communication is

measured. With those values performance of internal

edges and nodes can be derived, e.g. by subtracting the

average intra-socket latency from the inter-socket la-

tency, the hidden edge between the mem and the QPI

nodes is parameterized.

5.2 Validation of Mathematical Models

Validation is performed on multiple levels of abstrac-

tion. First, the underlying mathematical models of net-

work and I/O-subsystem are compared with the ob-

servations and this shows the discrepancy inherent to

the models. Since the simulator implements the mod-

els with some slight modifications, it cannot do bet-

ter than the mathematical models. For a qualification

of the network model PingPong and SendRecv kernels

are executed between two processes and with a variable

message size. The comparison showed a good match for

the network models. However, caching inside the pro-

cessor L3 cache speeds up transfer of smaller messages.

This can not be handled by the simulation since it does

not track cache locality of the accesses.

Performance of the I/O-subsystem is measured with

IOZone and another disk benchmark and compared

to the disk model. Note that the benchmarked I/O-

subsystem includes the overhead for an Ext4 file sys-

tem and the optimizations done by the Linux kernel.

The measured behavior showed the complex interplay

between file system, kernel and hard disk characteris-

tics. Therefore, the simplified mathematical model can

predict performance only to a limited extent – for non-

cached I/O it works well.

5.3 Validation of the Simulator

On the one hand, PIOsimHD is validated against

the mathematical models to discuss the discrepancy

between implementation and theory. The comparison

showed a good match of the network flow protocol and

the simulation of the block I/O. However, the transfer

granularity, which defines the size in which the packets

are split, should not be too large compared to the aver-

age message size – since messages are fragmented into

packets of this size and multiplexed, this seems natural.

On the other hand, benchmarks and simple parallel

applications are executed and their results are directly

compared with the simulation. The following MPI col-

lective calls are evaluated: Barrier, Reduce, Allreduce,

Bcast, Gather and Scatter. Further, the following point-

to-point communication schemes are supported: Ring

– every process sends data to its right neighbor and

receives from the left neighbor, Paired – an even pro-

cess exchanges data with the next odd process by us-

ing MPI Sendrecv(), SendToRoot – all processes send

data to the root process, which receives data in order

and SendrecvRoot – processes use MPI Sendrecv() to

exchange data with root.

The benchmark is used to measure collective and

point-to-point communication times for payloads of 1,

10, 100 and 1000 MiB. A variant of the benchmark mea-

sures payloads of 10 KiB; in this case, communication

time is much lower. Therefore, more repeats must be

conducted. This small payload helps assessing the la-

tency model while larger payloads are increasingly af-

fected by the network throughput characteristics – for

100 MiB the influence of the latency is expected to be

rather low on our network.

A huge number of configuration combinations is

evaluated. Every MPI function is called 4 times and

the whole benchmark is restarted 4 times to increase

robustness. Configurations are defined by node count

and process count, the node numbers range from 1 to

10, and up to 20 processes are deployed. MPICH2 is

run to distribute the processes in round-robin fashion

among the available nodes and the sockets within. To

illustrate the placement scheme consider the Configura-

tion 2–5. Here 5 processes are placed on the two nodes

(and the four sockets) as follows: ((0,4),(2)),((1),(3)),

that is the first socket on the first node hosts Process 0

and 4, and the second socket on the same node hosts

just Process 2 and so forth.

For the simulation the point-to-point operations

are recorded and executed by the simulator – option-

ally, the simulator can replay the computation time in

the collective calls. Thus, the simulator recreates the

real communication pattern and should achieve simi-

lar results. Four diagrams show the observed and sim-

ulated time of scattering 10 MiB of data, and of calling

MPI Allgather() with 10 KiB of data (Figure 3)2. It

can be seen that the simulator achieves similar times for

intra-node communication – other collectives are quite

similar. Time of the estimate is typically at least around

80% of the observed time, and often matches well, see

for example MPI Scatter(). While on the real network

the observations vary due to the Gigabit Ethernet, the

model uses a fixed timing. Thus, for example, the dips

for the Configurations 4–8 and 8–16 in Figure 3b are

2 Measurements are made with MPICH2 1.3.2 and Open-
MPI 1.5.3 as a reference.

7/9



8 Julian M. Kunkel

(a) Reading 100 MiB
records.

(b) Writing 100 KiB
records.

Fig. 5: I/O performance of 8 clients transferring 1 GiB of

data per process. Servers are placed on the same nodes

and provide 2 GiB of main memory for caching writes.

inherent to the communication pattern. Timing of lo-

cal communication is estimated well for large messages,

but often underestimated by a factor of 3 to 4 for small

messages, probably due to processor caching. In a few

cases the simulator underestimated performance by a

factor of 10, which indicates a problem in the MPI im-

plementation. This shows the importance of theoretic

estimates.

Besides the communication, the performance of the

four levels of access including collective I/O is evalu-

ated with PVFS. Two of the generated graphs are given

in Figure 5. In most cases the simulator achieves simi-

lar results, proving the correctness of the simple mod-

els. However, for small record sizes the simulator esti-

mates a better performance. This is due to the improved

scheduler in the I/O servers.

At last, a Jacobi PDE which offers checkpointing

is evaluated for multiple problem sizes and configura-

tions. In this case the application trace is fed into the

simulator, which simulates all calls with its modular

implementations. An excerpt of the measured and the

simulated timelines is given in Figure 4. The simulation

of the trace and profiles are surprisingly accurate – also

in many cases communication patterns can be observed

in the simulation like on the real system.

6 Summary and Future Work

In this paper the simulator PIOsimHD is described and

the conducted approach to validate the implemented

hardware and software models is introduced. The sim-

ulator can be fed with traces to rerun the parallel pro-

gram on any configuration of the cluster system. This

feature has been used to validate collective calls and a

Jacobi PDE for many configurations.

HDTrace is an environment which allows tracing of

MPI-IO behavior. With HDTrace observations can be

compared with simulation results which simplifies as-

sessing the observations.

With the determined parameters for our Westmere

cluster the validation showed an astonishing match with

the observations. Due to the capability of the simulator

local communication and I/O can be assessed in silico,

too. This allows us to identify inefficiencies, to conduct

research on new algorithms, and to evaluate future sys-

tems.

In order to evaluate and improve communication for

cluster systems more experiments will be conducted in

the future. Also more I/O capabilities will be evaluated,

like the experiments we conducted in [6].

References

1. Geimer, M., Wolf, F., Wylie, B.J.N., Becker, D., Böhme,
D., gs, W.F., Hermanns, M.A., Mohr, B., Szebenyi, Z.:
Recent Developments in the Scalasca Toolset. In: Tools
for High Performance Computing, Proceedings of the
3rd International Workshop on Parallel Tools. Springer
(2009)

2. Girona, S., Labarta, J., Badia, R.M.: Validation of
Dimemas Communication Model for MPI Collective Op-
erations. In: Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 39–
46. Springer-Verlag, London, UK (2000)

3. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.:
Verifying Causality between Distant Performance Phe-
nomena in Large-Scale MPI Applications. In: Proceed-
ings of the 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing,
pp. 78–84. IEEE Computer Society, Washington, DC,
USA (2009)

4. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim:
Simulating Large-Scale Applications in the LogGOPS
Model. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Comput-
ing, HPDC ’10, pp. 597–604. ACM, New York, NY, USA
(2010)

5. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M.,
Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The
Vampir Performance Analysis Tool-Set. In: Tools for
High Performance Computing, Proceedings of the 2nd
International Workshop on Parallel Tools, pp. 139–155.
Springer (2008)

6. Kuhn, M., Kunkel, J., Ludwig, T.: Simulation-Aided Per-
formance Evaluation of Server-Side Input/Output Opti-
mizations. In: PDP 2012. Munich Network Management
Team, IEEE (2012)

7. Kunkel, J.: HDTrace – A Tracing and Simulation Envi-
ronment of Application and System Interaction. Tech.
Rep. 2, Research Group: Scientific Computing, Univer-
sity of Hamburg (2011)

8. Rodrigues, A.F., Murphy, R.C., Kogge, P., Underwood,
K.D.: The structural simulation toolkit: exploring novel
architectures. In: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06. ACM, New York,
NY, USA (2006)

9. Shende, S.S., Malony, A.D.: The Tau Parallel Perfor-
mance System. Int. J. High Perform. Comput. Appl.
20(2), 287–311 (2006)

8/9



Simulating Parallel Programs on Application and System Level 9

10. Tu, B., Fan, J., Zhan, J., Zhao, X.: Accurate Analyti-
cal Models for Message Passing on Multi-core Clusters.
In: Proceedings of the 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based
Processing, pp. 133–139. IEEE Computer Society, Wash-
ington, DC, USA (2009)

11. Wolfgang Kreutzer, B.P.: The Java Simulation Hand-
book: Simulating Discrete Event Systems with UML and
Java. Shaker Verlag (2005)

9/9


