
A user-controlled GGDML code translation technique
for Performance Portability of Earth System Models

Nabeeh Jum’ah1 & Julian Kunkel2

1 Universität Hamburg Jumah@informatik.uni-hamburg.de, 2 Deutsches Klimarechenzentrum kunkel@dkrz.de

ABSTRACT
Demand for high-performance computing is in-
creasing in earth system modeling, and in nat-
ural sciences in general. Unfortunately, auto-
matic optimizations done by compilers are not
enough to make use of target machines’ capa-
bilities. Manual code adjustments are manda-
tory to exploit hardware capabilities. However,
optimizing for one architecture, may degrade
performance for other architectures. This loss
of portability is a challenge. Our approach in-
volves the use of the GGDML language exten-
sions to write a higher-level modeling code, and
use a user-controlled source-to-source transla-
tion technique. Translating the code results in an
optimized version for the target machine.

The contributions of this poster are:

• The use of a highly-configurable code transla-
tion technique to transform higher-level code
into target-machine-optimized code

• Evaluation of code transformation for multi-
core and GPU based machines, both single
and multi-node configurations

GOALS
Achieve high performance and portability be-
sides to improving code readability and main-
tainability through a slight language modifica-
tion and a lightweight compilation infrastruc-
ture fostering separation of concerns:

• Scientists from the domain science develop
the code of the model to solve the problem
from a scientific perspective. The machine-
specific optimization is not needed.

• The configuration details related to machine-
specific optimization are provided by scien-
tific programmers. They provide the trans-
lation tool the needed configuration informa-
tion to generate architecture-optimized code.

Fig. 1: Separation of Concerns

APPROACH
• The modeling language, e.g. C or Fortran,

along with the GGDML language extensions
are used to write the source code of a model

• Machine-specific configuration information
are written to transform the source code into
an optimized target-specific version

• The translation tool uses both

– the semantics of the language extensions
– and the configuration information

to translate the source code and apply the op-
timization procedures

CONFIGURATION SPECIFICATION
• The machine-specific configuration informa-

tion allows the user to control the source code
translation (and optimization) process

• The set of language extensions is dynamically
extensible through the configuration specifi-
cation that is fed to the translation tool

• The declaration specifiers are defined through
the configuration specification

– The specifiers are defined in groups

* e.g. dimension group: 2D or 3D
– They control how the variable is handled

• The allocation and deallocation of the model’s
variables is guided by a specific section

• The definition of the grids that the model uses
is handled by a specific section that allows to
describe the model’s global domain

• The parallelization of the code is driven by the
configuration specification

• The memory layout is completely controlled

– Flexible array index transformations

• The halo exchange is initialized and accom-
plished in a controlled manner

SOURCE-TO-SOURCE TRANSLATION
A lightweight translation tool –that ships with code repositories and integrates into build systems–
translates model code that uses GGDML extensions into a target-architecture-optimized code.

TEST SETUP
• An icosahedral-grid-based modeling testbed, 1024x1024x64 grid
• Two different memory layouts

– A three-dimensional array with three-index addressing
– A one-dimensional array with transformed one-index transformed addressing

• Two test machines

– DKRZ Mistral: dual socket Intel Broadwell nodes (Intel Xeon E5-2695 v4 @ 2.1GHz), OpenMPI
version 1.8.4 and GCC version 7.1

– NVIDIA’s cluster: Haswell CPUs (Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz), P100 and V100
GPUs, OpenMPI version 1.10.7 and the PGI compiler version 17.10

GPU EXPERIMENTS
The table below shows the performance and the memory throughput (measure with NVIDIA’s
’nvprof’ tool) of the code when run on a single P100/V100 node.

Serial
P100 V100

performance
GF/s

Memory throughput
GB/s performance

GF/s

Memory throughput
GB/s

read write read write
3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12

• Changing the memory layout reduces the
amount of the data that needs to be read from
the memory, thus performance improves.

To evaluate the scalability of the testbed code on
multiple nodes with GPUs, we have translated
the code with MPI and we have run it on 1-4
P100 GPU nodes.

• The figure shows the performance achieved in
both cases when measuring the strong and the
weak scalability. The performance is measured
with and without halo exchange. The gap re-
flects the cost of data movement from/into the
GPU’s memory and the communication time.

Fig. 2: P100 scalability

MULTICORE EXPERIMENTS
To evaluate the scalability of the translated code with multiple MPI processes
on CPU nodes, we have run it on 1,4,8,12,16,20,24,28,32,36,40, and 48 nodes.

Both the strong and the weak scalability efficiency are shown in the figure. The efficiency is still
around 100% up to 48 MPI processes for the weak scaling measurements. The Strong scaling
measurements decrease from 100% at one process to about 70% at 48 processes in a linear trend.

The performance of the translated code that uses OpenMP with the MPI is also evaluated. We have
run the code on 1,4,8,12,16,20,24,28,32,36,40 nodes and 1,2,4,8,16,32, and 36 cores per node.

LANGUAGE EXTENSIONS
With the GGDML language extensions, the test
code is written with higher-level semantics.
GGDML abstracts grid concepts (e.g. cell, edge,
vertex ...) especially for icosahedral models:

• Extends a general-purpose language

– Can be used with different languages

• Declaration of models’ variables
• Variable allocation and deallocation
• Expressions to specify grids

• Reference variables by grid elements

– Named element relationships

* to reference cell edge

* to reference cell above/below

* to reference a neighbour cell

* ...

• Grid elements traversal

– Apply stencil operation
– Update data of variables while traversing

• Reduction expressions

CODE QUALITY

GGDML achieves code reduction to 30% of the
original code (LOC). The figure shows six ker-
nels from three icosahedral models (two each).

ICON 1
ICON 2

NICAM 1
NICAM 2

DYN. 1
DYN. 2

0

20

40

60

80

Lin
es

existing code
with GGDML

SUMMARY
• We introduce a user-controlled code transla-

tion technique of higher-level GGDML-based
code to provide performance portability for
earth system modeling.

• The model’s code is written with GGDML
from a scientific perspective (not machine).

• The higher-level code is translated by a
source-to-source translation tool.

• Besides to the semantics of the GGDML lan-
guage extensions, the translation process is
driven by user-provided configuration infor-
mation, which depends on the target machine.

• Compilation configurations guide the tool
to generate machine-dependent optimizations
such as memory layout.

• The experiments show the success of the tech-
nique to run the test application on multi-core
machines and GPUs, both on single and mul-
tiple node configurations.

FUTURE WORK
• Investigate performance improvement oppor-

tunities in kernel computation.

• Investigate further kernel code analysis for
inter-kernel optimization possibilities.

• Investigate the use of optimized libraries.

• Investigate communication optimization.

ACKNOWLEDGEMENTS
This work was supported in part by the German
Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Com-
puting” (SPPEXA) (GZ: LU 1353/11-1).


