
Utilizing In-Memory Storage for MPI-IO
Julian Kunkel, Eugen Betke

Deutsches Klimarechenzentrum (DKRZ)

ABSTRACT
In contrast to disk or flash based storage so-
lutions, throughput and latency of in-memory
storage promises to be close to the best perfor-
mance. Kove®’s XPD® offers pooled memory for
cluster systems. However, the system does not
expose access methods to treat the memory like a
traditional parallel file system that offers POSIX
or MPI-IO semantics.

Contributions of this poster are:

1. Implementation of an MPI-IO (wrapper)
driver for the XPD

2. Thorough performance evaluation of the
XPD using IOR (MPIO)

This MPI independent file driver enables high-
level I/O libraries (HDF5, NetCDF) to utilize the
XPD’s pooled memory.

APPROACH
The developed MPI-IO file drivera is selectable
at runtime via LD_PRELOAD. It checks the file
name for the prefix “xpd:” and routes the ac-
cesses otherwise to the underlying MPI. Impor-
tant MPI-IO functions for HDF5 and IOR are
implemented. During the MPI_open/close the
Infiniband connections to the XPD’s are estab-
lished/destroyed.

IOR is used for benchmarking performance and
barriers between the phases (open, write, read,
close) are used to synchronize the processes.

The performance analysis varies the parameters:

• Access granularity:
16 KiB, 100 KByteb, 1 MiB, 10 MiB

• Processes-per-node (PPN): 1 to 12
• Nodes: 1 to 98
• Connections: 1 to 14
• Access pattern: sequential and randomc

• File size: 20 GiB per connection d

Performance metrics:

M1. Time for open/close (used to test scalabil-
ity of the connections)

M2. Throughput read/write reported by IOR
M3. Throughput read/write (computed based

on the time for the read/write phase)

Each configuration is run at least three times.
Since the throughput reported by IOR includes
overhead of open/close and initially that times
turned out to be significant, those aspects have
been investigated separately.

A subset of measurements is run on the Lustre of
DKRZ’s supercomputer Mistral.

ahttp://github.com/JulianKunkel/XPD-MPIIO-driver
bBase 10 has been used on purpose as this leads to un-

aligned access for file systems, i.e., 100 KByte = 105 Bytes. All
other cases are base 2.

cAs expected for a DRAM based storage system, they did
not show significant differences. Thus, the poster only con-
tains values for random I/O.

dThe capacity of the XPD is shared among all users.

OVERVIEW
Performance of all (7500) conducted runs:

Fig. 1: Observed throughput computed based on the
read/write phase (M3.)

Observations:

• Read/write behaves symmetric
Pearson correlation coef.: 0.969

• Open/close overhead reduces throughput
of M2 ∼= 0.9 ·M3

• Best performance:

– 65,600 MiB/s (write)
– 72.200 MiB/s (read)
⇒ 5155 MiB/s per IB FDR link (read)

INCREASING CONNECTIONS
Understanding the performance behavior when increasing the number of connections reveals scale-
out behavior. The test uses always 14 client nodes. Results for reads are shown, write is similar.

Fig. 2: Granularity: 16 KiB Fig. 3: Granularity: 100 KB Fig. 4: Granularity: 10 MiB

SCALING BEHAVIOR
Results for measuring performance varying blocksize (10 MiB, 1 MiB, 100 KB, 16 KiB), nodes and PPN.

(a) Read (b) Write

The graphs contain fitting curves for 1 MiB and 100 KB. Graphs for PPN=5 and PPN=8 look similar.

Observations:

• With small block sizes, I/O becomes limited by network latency and CPU speed
• An increase of PPN or client nodes improves overall throughput until hardware is saturated
• Robust scaling behavior, with PPN=12 and 14 client nodes, peak performance is achieved
• Regardless of PPN, with 14 nodes (== 14 IB links), the 14 server links are at > 50% saturated

OPENING/CLOSING OF FILES

The connection to the XPDs is established during MPI_File_open() and disconnection during close.
This allows to define the XPD volumes and striping factor to be used at open time.

Fig. 5: Results for 14 connections including fitting curves for PPN={1,2,3,5,8}

(a) Open vs. process count (b) Open vs. node count (c) Close vs. node count

A few (random) outliers in the close figure are up to 1.1s, they are purged from the graph.

Estimating scaling of connection times using linear models

To estimate the behavior for large systems, a linear model is
built: t(PPN, nodes) = I + cppn · PPN + cnodes · nodes
Where I and all coefficients starting with c are determined.

Type Intercept cppn cnodes R2

Open 0.0705 0.1090 0.00235 0.966
Close 0.2490 0.0076 0.00166 0.406

To evaluate the impact for the number of connections (the tests
have been run on only 14 nodes), another model is built. Since
for each PPN the connections are established, they must be
multiplied:
t = I + cppn · PPN + cconn · conn+ cPPN :conn · PPN · conn

Type Intercept cppn cconn cPPN :conn R2

Open -0.0031 0.0133 0.00586 0.00695 0.98
Close -0.012 0.0128 0.01960 0.00007 0.90

Fig. 6: Open times for varying con-
nections on 14 nodes

Given that 14 connections are used on a system with 10.000 nodes, 24 PPN, the prediction of the model
for open would be 26s. This would allow true burst-buffer scenarios (i.e., the XPD as a write-behind
cache) or cases in which only a subset of data regions is needed.

Using the second model and 10000 connections to XPDs it would take about 1700s and 214s to open
and close a single file, respectively.

SYSTEM DESCRIPTION
The test system is Cooley, the visualization clus-
ter of Mira on ALCF:

• 126 compute nodes equipped with two
2.4 GHz Haswell E5-2620

• FDR Infiniband
• Kove® XPD® L3
• 3 XPDs with 6+4+4=14 FDR connections

PERFORMANCE VARIABILITY
A low performance variability is important for
tightly coupled applications.

Fig. 7: Density of the variability range across all con-
ducted experiments (span across three repeats each).

• Mean(read) = 1.23%

• Mean(write) = 1.78%

• 99% of all measure-
ments vary < 10%

• 14 (0.6%) are > 10%

Fig. 8: Boxplots for 100 repeats on 14 nodes

(a) Read (b) Write

COMPARISON TO LUSTRE
DKRZ’s phase2 Lustre system consisting of 68 OSS
and 33 PByte of storage capacity. Theoretical
peak: 367 GiB/s. Metadata: 210.000 Ops/s

MPI-IO configuration: Collective I/O was en-
abled for write access, only for granularities
< 512 KiB. One aggregator per node was used.
The number of stripes = 2 · number of nodes.

Average speedup (in number of times) of using the
XPD vs. Lustre based on random I/O of 2, 4, 8, 14
nodes and 1, 2, 3, 5, 8, 12 PPNs:

16 KiB 100 KB 1 MiB 10 MiB
write 619 329 10 10
read 887 79 19 15

Best performance is achieved on 14 nodes, 5 PPN,
1 MiB access size:
7493 MiB/s (read), 3659 MiB/s (write)

Open/close times, observed in benchmarks on 1-
98 nodes, are significantly smaller than on XPD:

open close
write <0.28 sec < 0.14 sec
read < 0.068 sec < 0.178 sec

OBSERVATIONS & CONCLUSIONS
• Read performance ≈write performance
• Random I/O ≈ sequential I/O
• Highly scalable in terms of

– client nodes
– number of connections

• Bottlenecks are CPU and network latency

– in particular for small blocksizes

• Pre-registered memory can boost I/O

– used for 100 KByte (faster)
– not used for 1 MiB (slower)

• Excellent access time variability

– read: ≤ 2.5%; write: ≤ 5%

• File opening/closing times

– must be investigated for big systems
– can be improved (according to Kove)

In the future, we aim to optimize buffer settings,
work towards a full MPI-IO compatible wrapper
library and deal with data migration between
XPD and file system.

ACKNOWLEDGEMENTS
Thanks to Kove for their support and discussion.
Thanks to our sponsor William E. Allcock for provid-
ing access and feedback. This research used resources
of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported un-
der Contract DE-AC02-06CH11357.


