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In forestry studies, deep learning models have achieved excellent performance in many

application scenarios (e.g., detecting forest damage). However, the unclear model

decisions (i.e., black-box) undermine the credibility of the results and hinder their

practicality. This study intends to obtain explanations of such models through the use

of explainable artificial intelligence methods, and then use feature unlearning methods

to improve their performance, which is the first such attempt in the field of forestry.

Results of three experiments show that the model training can be guided by expertise

to gain specific knowledge, which is reflected by explanations. For all three experiments

based on synthetic and real leaf images, the improvement of models is quantified in

the classification accuracy (up to 4.6%) and three indicators of explanation assessment

(i.e., root-mean-square error, cosine similarity, and the proportion of important pixels).

Besides, the introduced expertise in annotation matrix form was automatically created in

all experiments. This study emphasizes that studies of deep learning in forestry should

not only pursue model performance (e.g., higher classification accuracy) but also focus

on the explanations and try to improve models according to the expertise.

Keywords: explainable artificial intelligence, forest care, deep neural networks, feature unlearning, classification

1. INTRODUCTION

Due to climate change, environmental damage, and other related factors, extreme weather events
(e.g., wildfires, heat waves, and floods) are occurring more frequently all over the world in recent
years (Stott, 2016). As essential cogs in the global ecosystem, forests have many ecological functions
including conserving water, protecting biodiversity, and regulating climate (Führer, 2000; Zhang
et al., 2010). Therefore, forest care is vital for our future. Fortunately, the United Nations has
proposed 17 Sustainable Development Goals, where the 13th goal climate action, and 15th goal life
on land pertain to forest care1. This has promoted studies in forestry.

Remote sensing technology has provided data with high spatio-temporal resolution and many
spectral bands for forestry research, which allows researchers to use more information to build a
model than traditional ways of collecting data in the wild. Due to the ability to gain knowledge
from large amounts of train data, artificial intelligence technology represented by deep learning
models has also been applied in forestry to accomplish diverse tasks (Wang et al., 2021) including

1Sustainable Development Goals: https://sdgs.un.org/goals.
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tree species classification (Wagner et al., 2019) and damage
assessment (Hamdi et al., 2019; Tao et al., 2020). In terms of
the data types, most studies in forestry have used deep learning
models to analyze remote sensing data (Zhu et al., 2017; Diez
et al., 2021), such as unmanned aerial vehicle (UAV) data (Diez
et al., 2021; Onishi and Ise, 2021), high-resolution satellite images
(Li et al., 2017), and 3-D point cloud data (Zou et al., 2017). There
are also some studies based on other data types including the
images of digital cameras (Liu et al., 2019) and the characteristics
of individual trees (Ercanlı, 2020). Deep learning models are
regarded as black boxes due to their complicated network
structures and a large number of parameters (Castelvecchi, 2016).
Although trained models can achieve excellent performance, it is
difficult for researchers and users to understand how they make
decisions. This indicates that the model may not have gained the
correct knowledge (e.g., Clever Hans2), and also undermines the
users’ confidence in the deep learning models.

To interpret the black-box models, researchers focus on
the studies of explainable artificial intelligence (XAI) methods
(Samek et al., 2019). Many XAI methods with different
principles have been proposed and can be divided into three
categories: visualization methods, model-agnostic methods, and
deep-learning-specific methods. The first category consists of new
visualization methods to display the parameters of complex
models (e.g., random forests and neural networks) (Zeiler
and Fergus, 2014; Zhao et al., 2018), such as clustering the
original model parameters or displaying feature maps of part
layers. Model-agnostic methods can be used to interpret any
model because these methods only consider the variation of
model outputs following perturbing inputs (Ribeiro et al.,
2016b; Molnar, 2020). Common model-agnostic approaches
include individual conditional expectation (ICE) (Goldstein
et al., 2015), local interpretable model-agnostic explanations
(LIME) (Ribeiro et al., 2016a), and Shapley additive explanations
(SHAP) (Lundberg and Lee, 2017). Besides, some studies have
proposed advanced model-agnostic approaches to combine the
local explanations (i.e., sample-based) and global explanations
(i.e., feature/variable-based) (Giudici and Raffinetti, 2021).
The deep-learning-specific methods such as layer-wise relevance
propagation (LRP) (Bach et al., 2015) and gradient-weighted
class activation mapping (Grad-CAM) (Selvaraju et al., 2017)
are designed to interpret trained deep learning models based on
detailed network information (e.g., gradients). These methods
are typically used to get sample-based explanations in image
classification tasks. Several studies use multiple XAI methods
to interpret trained models, such as using Grad-CAM to obtain
the contributions of input pixels as well as visualizing the
feature maps of part layers (Xing et al., 2020). In addition to
computer science, XAI methods have been applied in various
fields including medicine (Tjoa and Guan, 2020), geography
(Cheng et al., 2021), and disaster assessment (Matin and Pradhan,
2021). However, few studies have attempted to interpret models
in the field of forestry (Onishi and Ise, 2021), even though deep
learning methods have been widely applied in this field.

XAI methods provide explanations of deep learning models,
but this is not sufficient for practical purposes. For specific tasks,

2Clever Hans: https://en.wikipedia.org/wiki/Clever_Hans.

researchers wish to guide the training based on expertise in a
way that the models gain the correct knowledge (i.e., what we
believe the model should learn) and avoid the Clever Hans effect
(Lapuschkin et al., 2019; Anders et al., 2022). The approaches
used to guide the training of deep learning models are known
as feature unlearning (FUL) methods, and these methods utilize
one of two main ideas: The first idea is perhaps the most
direct, in which models are retrained with reformed train data
(e.g., explanatory interactive learning (XIL); Teso and Kersting,
2019; Schramowski et al., 2020). For instance, if some error-
prone samples are affecting the model’s performance, it can
be improved by simply removing these samples from the train
data and then retraining the model. The second idea is to
design a new loss function to highlight the weight of important
features according to expert knowledge, such as adding a mask
to mark useless pixel areas in image classification tasks. The
common methods with this idea include right for the right
reasons (RRR) (Ross et al., 2017) and contextual decomposition
explanation penalization (CDEP) (Rieger et al., 2020). Several
more complicated methods exist such as learning not to learn
(LNTL) (Kim et al., 2019). In addition to using new loss functions
and retraining models based on new train data, LNTL also alters
the network structure. Many FUL methods have been proposed,
but most are not commonly used in practice. In this study, we will
apply FUL methods in the field of forestry.

This study aims to improve the deep learning models
in forestry based on the obtained model explanations and
specialized expertise. Deep learning models can mine massive
amounts of original data. XAI methods can shed light on the
black boxes and provide explanations. If the explanations are
not as expected, FUL methods can be used to guide the training
and improve the credibility and performance of deep learning
models. The main contributions of this paper can be summarized
as: (1) using explanations and expertise to improve deep learning
models, which is the first such attempt in the field of forestry;
(2) emphasizing that explanations reflect how the model make
decisions, which is vital for black-box models; (3) a new research
framework is proposed and serves as a reference for deep learning
studies in forestry.

The paper is organized as follows: Section 2 describes the
proposed research framework and the basic principles of applied
Grad-CAM and RRRmethods. We also introduced three indexes
to assess the model explanations. To verify this study, three
experiments based on simulated data and real data were carried
out in Section 3. The results show that the model accuracy can
be improved and the explanations can be altered as expected.
Section 4 discusses the impact of outlier data and sampling
variability on model performance. We summarized this research
and provided future directions in Section 5.

2. METHODS

2.1. Research Frameworks of Deep
Learning Studies
In common studies that utilize deep learning models to
accomplish tasks, the focus is mostly on achieving higher
performance rather than making sure that the trained models
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FIGURE 1 | Three frameworks of deep learning studies (A: get the results only; B: get the results and explanations; C: improve the model based on explanations and

expertise).

make decisions properly (i.e., black-box models) (as displayed in
Figure 1A). In further studies, XAI methods have been applied
to explain the trained models and obtain the explanations
corresponding to the results (as displayed in Figure 1B). Based
on the explanations and expertise, researchers can judge whether
the trained models have gained the correct knowledge from the
data. In this article, we propose a new research framework (as
displayed in Figure 1C). It has four steps including training
an original model, getting the model explanations, introducing
the expertise based on the current explanations, and retraining
the model with the introduced expertise. The FUL methods are
used to guide the training when the original model explanations
are inconsistent with expertise. Compared to the other two
frameworks, the framework of our research is not only pursuing
the model performance but also using explanations and expertise
to interpret and improve the deep learning models. In this study,
we select the image classification tasks in forestry as the specific
application of the proposed research framework.

2.2. The Applied XAI Method:
Gradient-Weighted Class Activation
Mapping
This research uses the Grad-CAM method (Selvaraju et al.,
2017) to obtain the corresponding explanations of each input
(i.e., intuitive visualization of pixel importance) from the trained
deep learning models. Grad-CAM is a prominent XAI method
that has been applied extensively in computer vision tasks.
Considering that all three experiments in this research are based
on image data, we take the reliable Grad-CAM method to
represent XAI methods and do not discuss others nor their
differences in resulting explanations. Grad-CAM is based on the
class activation map (CAM) methods (Zhou et al., 2016). It uses
the gradient information in the training process to determine the

FIGURE 2 | Schematic diagram of the Grad-CAM method.

neurons’ importance in the model’s decision, i.e., the neurons
with larger absolute values of gradients are more important.

Given M as the trained neural network, X ∈ R
U×V×B as the

input image with widthU, heightV , and B bands,A as the feature
maps with width P, height Q, and K bands (i.e., A1,A2, . . . ,Ak)
in the last convolutional layer, Y = [y1, y2, . . . , yn] as the

output variable before the softmax in a n-classification task,
∂yc

∂A
denotes the gradient corresponding to class c, Equations (1) and
(2) represent the formula for the Grad-CAM explanations [i.e.,
G(M,X, c)]. Figure 2 also illustrates the Grad-CAMmethod.

wc
k =

1

P × Q

P
∑

i

Q
∑

j

∂yc

∂Ak
ij

(1)
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G(M,X, c) = Trans(ReLU(

K
∑

k

wc
kA

k)), (2)

where 1
P×Q

∑P
i

∑Q
j denotes the global average pooling process,

wc
k
denotes the weight of feature map k corresponding to class

c in the linear combination. ReLU(·) is placed to only consider
features that have a positive impact on classification. It is noted
that the preliminary Grad-CAM explanations are of the same size
as the feature maps A (i.e., P×Q). Thus, need to use the Trans(·)
function to transform them into the size of inputs (i.e., U × V).

2.3. The Applied FUL Method: Right for the
Right Reasons
This research selects the RRR method (Ross et al., 2017) as an
example of many FULmethods to improve deep learning models
based on expertise. The basic idea of RRR is to add another
right reason loss (RRR loss) into the common loss function (e.g.,
cross-entropy) and guide the model training. As mentioned in
the Grad-CAM method introduction, the gradient information
of variables reflects their influences on the deep learning model.
The new loss aims to reduce the input gradient of useless pixels
identified by the annotation matrix of each sample and drive the
model to focus on the important features according to expertise.
The annotation matrix can be viewed as a binary mask that splits
pixels into two parts for the specific task. Zero-element and one-
element label the useful pixels and useless pixels, respectively.

According to the experimental results, the original RRR
formula (Ross et al., 2017) has been altered in this research. Given
θ as the model parameters, Xi as an input image, Yi as the model
output of Xi, Ai as the corresponding annotation matrix with the
same size as inputs, the new loss function using the RRR method
(i.e., NLoss) can be represented by Equations (3)–(6).

GradXi =
∂ loge (Yi + 1)

∂Xi
(3)

RLoss(Xi,Yi, θ ,Ai) = Sum(Ai · GradXi ) (4)

NLoss = CLoss+ λ · Balance(RLoss,CLoss) (5)

Balance(l1, l2) = 10
⌈log10 (

l2
l1
)⌉
· l1, (6)

where GradXi denotes the gradient of input Xi in the training
process. RLoss is the added loss. Sum(·) is the function to sum all
the elements of the controlled gradient Ai · GradXi . CLoss is the
common loss such as cross-entropy. Balance(·) is the function to
control the values of two losses in an order of magnitude. λ is the
weight of the RRR loss in model training.

The annotation matrix is critical for guiding model training.
In practical applications of forestry, it is difficult to set the
annotation matrix of each sample due to the huge amounts
of train data and the required expertise. For the RRR method,
the annotation matrix of some samples can be set as a zero
matrix. In this case, the loss function for model training will
essentially reduce to the common one. Besides, the annotation

matrix is used to label the useless area, which is easier than
labeling the important features and increases the robustness of
mask setting (e.g., just label unquestionably useless pixels such
as the background). Take the task of identifying diseased leaves
as an example (displayed in Figure 3). The bacterial spots in
a leaf are labeled in Figure 3b depending on expertise. But
the labeling is difficult to accomplish automatically and avoid
omissions. In comparison, the useless background pixels for this
task are labeled in Figure 3c by simple image processing (e.g.,
background extraction).

2.4. Explanation Assessment
This research aims to guide the training of deep learning models
based on expertise. It manifests as better model performance
and closer explanations to the predetermined real masks (i.e.,
annotation matrix). We use three indicators, root-mean-square
error (RMSE)3, cosine similarity (CosineS)4, and the proportion
of important pixels (PIP) labeled in real masks, to assess the
obtained explanations from three aspects including absolute
difference, relative difference, and differences in key features.

Given A = [a1, a2, · · · , aN] as an obtained explanation,
B = [b1, b2, · · · , bN] as the real mask with the same size of A,
Equations (7) to (9) represent three indicators of explanation
assessment.

RMSE =

√

∑N
i=1

(

ai − bi
)2

N
(7)

CosineS =

∑N
i=1 aibi

√

∑N
i=1 a

2
i

√

∑N
i=1 b

2
i

(8)

PIP =
Num(IP ∩ RM)

Num(IP)
, (9)

where N is the total number of pixels for an image (explanations
and real masks). IP is the set of pixels with the highest
contribution values in a certain top percent [e.g., 1, 5, 10%, should

be less than Num(RM)
N ] in explanations. RM is the set of pixels

labeled in corresponding real masks. Num(·) is the function to
count the number of elements in a set. Higher PIP values indicate
that more key pixels from the explanations are labeled in the
real mask.

3. MATERIALS AND RESULTS

3.1. Data and Three Tasks
Image classification is a common task in forestry. To verify
this study, we designed three tasks: distinguishing between real
leaves and simulated data (binary classification), identifying
diseased leaves (binary classification), and classifying plant
species (multiclass classification), based on the open-source

3Root-mean-square error: https://en.wikipedia.org/wiki/Root-mean-square_

deviation.
4Cosine similarity: https://en.wikipedia.org/wiki/Cosine_similarity.
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FIGURE 3 | An example of diseased leaves and the corresponding masks (i.e., annotation matrix) (a: original image; b: labeling the important bacterial spots; c:

labeling the useless background). The labeled pixels are red.

FIGURE 4 | Simulated leaves generation. The labeled pixels in the real mask are red.

PlantVillage dataset (Hughes and Salathé, 2015). PlantVillage
dataset contains leaf images of multiple plant species and also has
labels for each sample such as healthy and diseased. It has been
used in many studies on plant disease identification (Mohanty
et al., 2016; Geetharamani and Pandian, 2019; Abade et al., 2021).

3.1.1. Distinguishing Between Real and Simulated

Data
This study aims to highlight that the expertise can improve the
training of deep learning models and make the explanations of
models more similar to the predetermined annotation matrix
(i.e., the real mask). But for a specific task, it is difficult to
assess explanations fairly due to the human errors in generating
the corresponding real mask of each input sample. Therefore,
we simulated images with definite real masks. The specific
way of simulated data generation is to select a few images of
healthy pepper leaves and then randomly add some transparent
circles (number, size, and location are random) into the leaf
(as displayed in Figure 4). The real masks of generated images
are the pixels outside the added circles. The purpose of adding
transparent circles is to simulate the thinning of diseased leaves.
The training objective of this experiment is to distinguish
between real pepper leaves and fake leaves. To increase the
difficulty of the task, added circles are allowed to be located in
the background of simulated images.

The total number of samples (half real half fake) in this
experiment is 2956. Train data, validation data, and test data
contain 1773 (60%), 591 (20%), and 592 (20%) samples,

respectively. The training process was implemented based on
the PyTorch framework.5 The applied network is AlexNet
(Krizhevsky et al., 2012), a well-known network in computer
vision tasks. It is noted that we choose AlexNet as an example
and do not consider other known networks. Since this research
focuses more on model improvement based on expertise
rather than absolute classification accuracy. Besides, for better
comparability between the results, we used the same network
structure in all three experiments, with the only alteration being
the number of neurons (2 or 10) in the output layer. For the
task of distinguishing between real and fake leaves, we trained
two models with the same number of epochs (i.e., 90) and got
two explanations for each input using the Grad-CAM method
(Selvaraju et al., 2017). The RRR method (Ross et al., 2017) was
only applied in the second training process, which means that
the second model considers the specific expertise provided by the
real masks. The weight λ of the RRR loss (Equation 5) was 1.5 in
this experiment.

3.1.2. Identifying Diseased Leaves
Identifying diseased samples is a common task in forestry. This
experiment aims to prove that the expertise and explanations can
improve the deep learning models trained for the identification
of diseased pepper leaves. The total number of image samples is
1994, including 997 images of healthy leaves and 997 images of
diseased leaves. We divided the samples into three parts for the

5PyTorch: https://pytorch.org/.
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FIGURE 5 | Examples of the real masks of the healthy leaf and the diseased leaf. The labeled pixels in masks are red.

model training, which are the train data (1196 samples, 60%),
validation data (399 samples, 20%), and test data (399 samples,
20%). The network structure for this experiment is the same as
the first experiment (i.e., AlexNet). The difference between this
experiment and the simulation experiment is difficult to mark
the key pixels for the diseased leaf identification. However, for
the RRR method, it is sufficient to label the assuredly useless
pixels. Therefore, we separated the background pixels of each
sample using the GrabCut algorithm (Rother et al., 2004) and
labeled these pixels as the real masks. Figure 5 displays two such
examples. We trained two deep learning models, similar to the
previous simulation experiment. The number of epochs is 60 for
both training processes and the expertise in annotation matrix
form was only used for the second training. The weight λ of the
RRR loss (Equation 5) was 2 in this experiment.

3.1.3. Classifying Plant Species
This experiment trains deep learning models to classify plant
species, which is also a common task in forestry. We selected
leaf images of 10 plant species, namely cherry, peach, potato,
soybean, strawberry, raspberry, tomato, blueberry, apple, and
grape. Compared with the previous two binary classification
tasks, this multiclass classification is more complex. The total
number of samples in this experiment is 1520, and each plant
species has the same number of samples (i.e., 152). To train the
model, we randomly divided the samples into three parts: train
data (912 samples, 60%), validation data (304 samples, 20%), and
test data (304 samples, 20%). The network structure is identical
to those of the previous two experiments (i.e., AlexNet), except
that the number of neurons in the output layer is 10. The leaf
shape is an important feature for species classification, unlike
in the task of diseased leaf identification. Therefore, we labeled
the pixels outside the minimum bounding rectangles of leaves as
the real masks in this experiment, which retains the information
of the leaves shapes. Figure 6 illustrates two examples of such
masks. Similar to the previous two experiments, we trained
two deep learning models and applied the RRR method in the

second training. The weight λ of the RRR loss (Equation 5)
was 2 in this experiment. The number of epochs is 90 for both
training processes.

3.2. Results
In terms of the first task, Figure 7 displays eight samples of input
images and the two corresponding explanations. The quantitative
results of the explanation assessment of the first task are given
in Table 1. Figure 7 shows that many sample explanations are
changed after incorporating expertise. The locations of pixels
with higher contribution values typically shift from the center of
leaves toward the added circles, which indicates that the model
has gained more correct knowledge from the predetermined
masks. The explanation assessment results in Table 1 show that
all the indexes of new explanations (i.e., applying the RRR
method) are better than those of the original explanations.
Moreover, the classification accuracy has also increased 2.9%
with the expertise, which is achieved while using the same train
data, network structure, and training epochs. For the task of
distinguishing between real leaves and simulated data, the results
show that the consideration of expertise does indeed improve the
deep learning model in terms of both accuracy and explanations.

In terms of the second task, Figure 8 displays the examples
of eight samples’ explanations (four healthy leaf samples and
four diseased leaf samples) obtained by the Grad-CAM method.
The explanations of the two trained models look similar, but
it can be seen that with the utilization of the RRR method,
the warm pixels appear less at the corners of the image in
the corresponding explanations, especially for the second and
third examples of diseased leaves. It proves that the second
trained deep learning model has been driven to ignore corner
background pixels according to the predetermined masks.
Table 2 shows the results of model accuracy and explanation
assessment for the task of identifying diseased leaves. The
classification accuracy and all three explanation assessment
indexes of the second trained model improve on the original
ones. The slight improvement in classification accuracy (0.02%)
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FIGURE 6 | Examples of the real masks of two species’ leaves. The labeled pixels in masks are red.

FIGURE 7 | Examples of model explanations for the first task. The three rows display the input image, original explanation, and the explanation with the consideration

of expertise. The pixels outside the added circles of each input are labeled as the real masks. A warmer color in the explanation indicates a higher contribution value,

denoting a more important pixel for the classification task.

TABLE 1 | Accuracy and explanation assessment for the task of distinguishing between real and fake leaves.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 81.6 0.583 0.440 60.3 59.6 58.2

RRR 84.5 0.580 0.462 61.2 60.7 58.9

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

maybe due to the already high original accuracy (>95%). It
may also be caused by the simplicity of the real masks, i.e.,

labeling the useless background pixels, which leverages limited
expertise. Nevertheless, the results of this experiment prove that
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FIGURE 8 | Examples of model explanations for the second task. The two columns reflect the explanations of healthy leaves and diseased leaves. For each column,

the three rows display the input image, original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a

higher contribution value, denoting a more important pixel for the classification task.

TABLE 2 | Accuracy and explanation assessment for the task of identifying diseased pepper leaves.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 95.5 0.533 0.710 61.4 62.2 63.8

RRR 95.7 0.530 0.714 66.2 65.7 65.8

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

it is possible to improve the deep learning models of identifying
diseased leaves.

In terms of the last task, Figure 9 illustrates examples of
model explanations for each of the 10 plant species. With the
expertise in annotation matrix form, the trained model focuses
more on the center pixels, pertaining to the leaf rather than
the corners, as can be seen obviously in the apple and grape
samples, which is analogous to the explanation improvement
in the experiment of identifying diseased leaves. Additionally,
the model with RRR utilization has an increased focus on
the leaf edges (e.g., the cherry sample in Figure 9), which is
consistent with common sense. Table 3 provides the results
of model accuracy and explanation assessment for the task of
classifying plant species. The second model surpasses the first
model in both accuracy and explanation assessment indicators.
The improvement in classification accuracy (4.6%) is the largest
among all three experiments, despite labeling a relatively small
number of useless pixels (as displayed in Figure 6) in the masks.

The results of this experiment show that it is possible to improve
the deep learning models for complex tasks.

The consideration of model explanations and corresponding
expertise can improve deep learning models in forestry, as
demonstrated by the three experiments. The degree of model
improvement is directly related to the task difficulty and quality
of the expertise.

4. DISCUSSION

Deep learning models require mining task-related knowledge
from the data. But for some practical applications, it is difficult
to avoid outliers in the train data. The outliers will affect the
model training because they contain the wrong information for
the task. However, the new research framework proposed in this
study can reduce such impact. Based on this framework, sample-
based explanations can be obtained by using XAI methods. The
corresponding explanations of outlier data may be different from
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FIGURE 9 | Examples of model explanations for the third task. The 10 columns reflect the explanations of 10 species’ leaves. The three rows display the input image,

original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a higher contribution value, denoting a more

important pixel for the classification task.

TABLE 3 | Accuracy and explanation assessment for the task of classifying plant species.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 87.8 0.563 0.797 81.1 82.6 83.6

RRR 92.4 0.550 0.810 86.1 87.3 87.3

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

TABLE 4 | Accuracy and explanation assessment (RMSE) results for the five-fold cross-validation.

Models Average_A (%) Max_A (%) Min_A (%) Average_R Max_R Min_R

Original 89.3 90.1 87.5 0.564 0.582 0.550

RRR 90.2 92.4 89.1 0.561 0.571 0.552

Average_, Max_, and Min_ denote the average, max, and min values of the corresponding indicators (i.e., accuracy and RMSE) in five experiments.

The better results of every index are in bold.

other normal samples’ explanations, which helps identify outliers
and remove them from the train data. Moreover, as mentioned
in Section 2.3, the applied FUL method RRR does not require
labeling the annotation matrix of all samples. It means that the
corresponding real masks of potential outlier data can be set as a
zero matrix, which has no additional impact on model training.

The sampling variability could also affect the performance of
deep learning models. To verify that the proposed framework is
robust to the train data, we take the third task (i.e., classifying
plant species) as an example and use the five-fold cross-validation

method. The original data are divided into five equal parts. For

each experiment, four of them form the train data, while the

other one is used for testing. All the network parameters and
experimental processes are the same as the ones in the above
experiment (Section 3.1.3). Table 4 provides the results of model
accuracy and explanation assessment (take RMSE as an example)
in the five-fold cross-validation. The max and min values of
accuracy and RMSE are close, which proves that the model
performance is stable for different train data. Besides, the models
using RRR surpass the original models in both classification
accuracy (the average, max, and min values of classification
accuracy) and explanation assessment (the average and max
values of RMSE). The result verifies that this study is robust to
sampling variability.
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5. CONCLUSIONS

This research aims to improve deep learning models in forestry
based on model explanations and corresponding expertise. Based
on the review of relevant studies on deep learning applications
in forestry, XAI methods, and FUL methods, we proposed
a new research framework which includes consideration of
explanations and expertise produces a reliable model in actual
tasks. To prove our point, we designed and performed three
experiments for various training tasks based on plant leaf data.
The qualitative and quantitative comparison of accuracy and
model explanations shows that the predetermined annotation
matrices (i.e., expertise) can guide and improve deep learning
models. For all three experiments, the classification accuracy
is increased (up to 4.6% in a 10-class classification task)
when considering expertise, and the improvement in model
explanation is also reflected by three indexes of explanation
assessment (i.e., RMSE, CosineS, and PIP). Besides, we also
discussed the impact of outlier data and sampling variability on
this study.

This research highlights the important role of model
explanations and expertise for deep learning studies in forestry,
especially with the growing impact of artificial intelligence
and big data and the ever-increasing utilization of deep
learning methods in this field. Furthermore, it serves as a
reference for relevant studies. It should be mentioned that
the masks we used were relatively simple, therefore we can
expect the deep learning models to have an even greater
improvement with higher quality expertise. Our experiments
consisted entirely of image classification tasks in this study.
The idea of using explanations and expertise to improve
deep learning models can also be applied in other tasks
such as time-series forecasting; all that is required is to
utilize the available XAI and FUL methods, or design new

ones. We intend to extend the application scenarios in
the future.
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