
FortranTestGenerator: Automatic and Flexible
Unit Test Generation for Legacy HPC Code

Christian Hovy, Universität Hamburg, Email: christian.hovy@uni-hamburg.de
Julian Kunkel, Deutsches Klimarechenzentrum GmbH, Email: kunkel@dkrz.de

ABSTRACT
Unit testing is an established practice in profes-
sional software development. However, in high-
performance computing (HPC) with its scientific
applications, it is not widely applied. Besides
general problems regarding testing of scientific
software, for many HPC applications the effort
of creating small test cases with a consistent set
of test data is high.

We have created a tool called FortranTestGen-
erator to reduce the effort of creating unit tests
for subroutines of an existing Fortran applica-
tion. It is based on Capture & Replay (C&R),
that is, it extracts data while running the orig-
inal application and uses the extracted data as
test input data. The tool automatically generates
code for capturing the input data and a basic test
driver which can be extended by the developer
to a meaningful unit test. A static source code
analysis is conducted, to reduce the number of
captured variables. Code is generated based on
flexibly customizable templates. Thus, both the
capturing process and the unit tests can easily be
integrated into an existing software ecosystem.

UNIT TESTS IN HPC
There are several definitions of what a unit test is
and what is not Some of are very strict regarding
the duration of execution or the degree of iso-
lation. Our pragmatic and HPC compatible ap-
proach to define unit tests is as follows:

1. The code under test (CUT) is a defined sub-
set of the application code, usually a certain
module or routine. It is tested isolated from
the parts of the application that call the CUT.

2. Testing does not focus on scientific validation
but on finding defects in the implementation
and/or preventing code regression.

3. Execution is significantly faster than running
the whole application.

4. It is automated, that is, the check whether or
not a test is passed is done by the test pro-
gram itself and not by a person.

OBSTACLES FOR UNIT TESTS
Besides general problems regarding testing of
scientific software such as the lack of test oracles,
we found several other obstacles for introducing
unit tests in HPC software development:

Effort
• Tests need test data as input.
• HPC applications handle large data sets.
• Manual set-up of test data can be exhausting.
• Even worse when the data layout is hardly

reproducible (e.g. for unstructured grids or
when using cache blocking).

Parallelism
• HPC applications usually run in parallel on

multiple nodes and CPUs.
• Communication and synchronization intro-

duce additional classes of errors such as
deadlocks and race-conditions.

• When testing a single subroutine, we have to
reproduce its MPI communication correctly.

Legacy Code
• HPC applications can be 100k to million lines

of code and can have a long history.
• The older the code base, the harder it be-

comes to introduce significant changes.
• When changes are made to a piece of soft-

ware, it needs to be tested that these changes
don’t have unintended side effects.

• Often software needs to be changed again to
make it testable.

Tool Support
• Fortran is widely used in HPC
• Tool support cannot keep up with languages

like Java or C#.
• Since the main goal for HPC is to solve grand

challenges computationally, tools that opti-
mize performance are usually of more inter-
est than for testing.

• In recent years, a handful of unit testing
frameworks for Fortran have emerged (e.g.,
pFunita).

ahttp://sourceforge.net/projects/pfunit

THE TOOL
FortranTestGenerator (FTG) is a tool for automatically generating unit tests for subroutines of existing
Fortran applications.
The main effort for creating unit tests for HPC applications is the set-up of consistent input data. When
working with legacy code, we can make use of the existing infrastructure and extract test data from
the running application. FTG generates code for serializing and storing a subroutines input data and
inserts this code temporarily into the subroutine (capture code).
In addition, FTG generates a basic test driver which loads this data and runs the subroutine (replay
code). Meaningful checks and test data modification needs to be added by the developer.

GENERAL FUNCTION OF FORTRANTESTGENERATOR

Source Code Analysis and Generation In a first step, the user has to provide assembler files (Step 1) from which
FTG builds up a call graph starting from the subroutine under test (SUT) (Step 2). The code for capturing all
the needed variables is automatically generated using static code analysis (Step 3) and inserted by FTG into the
original application code (Step 4). The code analysis is conducted to find out which variables are actually needed
by the subroutine. These are the input variables but also global or module local variables are considered. Finally,
a basic test driver for loading the input data and running the subroutine in isolation is generated (Step 5). All the
generated code can be customized by templates.

Runtime Now, the user can compile and run the original ap-
plication, now containing the capture code, to extract a consis-
tent set of input data for the SUT. The default time of capturing
(e.g. the 1st or any nth execution of the SUT) is defined by the
template, but can easily be changed in the generated code. After-
wards the test driver can executed with the captured data. When
the first replay was successful, the user can go on and extend
the test driver with meaningful checks or add additional tests by
calling the SUT again with altered data.

EXAMPLE

Capture The code generated by FTG (red boxes) in-
serted into the existing subroutine.

Replay Test driver generated by FTG

SOURCE CODE ANALYSIS
FortranTestGenerator conducts a static source
code analysis to find out which variables are
needed to replay a given subroutine:

Variables passed as arguments FTG distin-
guishes between arguments of intrinsic (primi-
tive) and derived (user-defined) types. While ar-
guments of intrinsic types are assumed to be
needed by the subroutine anyway, the usage of
TYPE arguments is analyzed to find out which
components (members) of a structure are actually
accessed by the subroutine or within one of its
called subroutines or functions.

Module variables Besides the analysis of ac-
cessed TYPE components, FTG is able to find the
module variables which are accessed by the sub-
routine or by called code. Those module vari-
ables can either belong to the same module of
the current subroutine/function or be imported
by USE statements.

Common blocks are currently not supported by
FTG since they are not considered as good prac-
tice any more and, thus, rarely used in modern
Fortran. But since many HPC applications con-
tain very old legacy code, it is planned to sup-
port them in the future.

CODE TEMPLATES
All of the code generated by FTG is based on cus-
tomizable templates. So, one can for example...

• replace the serialization framework
• include and initialize additional libraries
• make use of a unit testing framework
• add some standardized checks
• choose between embedding into the main ap-

plication/a test suite, or generating stand-
alone test programs

USER INTERFACE
• Configuration file

– Location of source and assembler files

– Exclude modules, routines or variables

• Code templates (optional, default templates
available)

• Commandline interface, for example to
generate capture code:
$> ./FortranTestGenerator -c
<module> <subroutine>

• Generated Code

– Modifiable (optional)

– Compiled and run manually

CAPTURE & REPLAY WITH MPI

The easy case The subroutine under test (SUT) runs
synchronized and execution number x on process i
communicates with execution x on process j. So, FTG
is able capture and replay execution x on both pro-
cesses in parallel.

Another feasible case The communication is a bit
more complicated, but foreseeable. Here, execution
x on process i communicates with execution y on pro-
cess j, where y is calculable from x.

Unfeasible or difficult cases The communication is
unforeseeable, or one execution of the SUT communi-
cates with more than one other execution or even with
another subroutine.

The solution Also capture MPI communication (not
yet implemented). Currently we are working on an
MPI wrapper library to enable capture & replay of in-
dividual processes.

FACTS
• Written in Python
• Templates based on the

Cheetah Template Engine
• Works with Fortran90 or later
• Needs GCC assembler files for analysis

• http://github.com/fortesg

REFERENCES

[1] C. Hovy and J. Kunkel. Towards automatic and
flexible unit test generation for legacy hpc code. In
2016 Fourth International Workshop on Software En-
gineering for High Performance Computing in Com-
putational Science and Engineering (SE-HPCCSE),
pages 1–8, Nov 2016.

http://sourceforge.net/projects/pfunit

