
applied
sciences

Article

Analyzing the Performance of the S3 Object Storage API for
HPC Workloads

Frank Gadban 1,* and Julian Kunkel 2,*

����������
�������

Citation: Gadban, F.; Kunkel, J.

Analyzing the Performance of the S3

Object Storage API for HPC

Workloads. Appl. Sci. 2021, 11, 8540.

https://doi.org/10.3390/

app11188540

Academic Editors: Antonio J. Pena

and Pedro Valero-Lara

Received: 19 July 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 MIN Faculty, University of Hamburg , 20146 Hamburg, Germany
2 Institute of Computer Science, Faculty of Mathematics and Computer Science, Georg-August-Universität

Göttingen/GWDG, 37018 Göttingen, Germany
* Correspondence: frank.gadban@studium.uni-hamburg.de (F.G.); julian.kunkel@gwdg.de (J.K.)

Abstract: The line between HPC and Cloud is getting blurry: Performance is still the main driver in
HPC, while cloud storage systems are assumed to offer low latency, high throughput, high availability,
and scalability. The Simple Storage Service S3 has emerged as the de facto storage API for object
storage in the Cloud. This paper seeks to check if the S3 API is already a viable alternative for HPC
access patterns in terms of performance or if further performance advancements are necessary. For
this purpose: (a) We extend two common HPC I/O benchmarks—the IO500 and MD-Workbench—to
quantify the performance of the S3 API. We perform the analysis on the Mistral supercomputer
by launching the enhanced benchmarks against different S3 implementations: on-premises (Swift,
MinIO) and in the Cloud (Google, IBM. . .). We find that these implementations do not yet meet the
demanding performance and scalability expectations of HPC workloads. (b) We aim to identify the
cause for the performance loss by systematically replacing parts of a popular S3 client library with
lightweight replacements of lower stack components. The created S3Embedded library is highly
scalable and leverages the shared cluster file systems of HPC infrastructure to accommodate arbitrary
S3 client applications. Another introduced library, S3remote, uses TCP/IP for communication instead
of HTTP; it provides a single local S3 gateway on each node. By broadening the scope of the IO500,
this research enables the community to track the performance growth of S3 and encourage sharing
best practices for performance optimization. The analysis also proves that there can be a performance
convergence—at the storage level—between Cloud and HPC over time by using a high-performance
S3 library like S3Embedded.

Keywords: HPC; cloud; convergence; storage; AWS S3; S3Embedded

1. Introduction

With the increased prevalence of cloud computing and the increased use of the In-
frastructure as a Service (IaaS), various APIs are provided to access storage. The Amazon
Simple Storage Service (S3) API [1] is the most widely adopted object storage in the cloud.
Many Cloud storage providers, like IBM, Google, and Wasabi, offer S3 compatible storage,
and a large number of Scale-Out-File Systems like Ceph [2], OpenStack Swift [3] and
Minio [4] offer a REST gateway, largely compatible with the S3 interface. HPC applications
often use a higher-level I/O library such as NetCDF [5] or ADIOS [6] or still the low-level
POSIX API. Under the hood, for the interaction with the storage system, MPI-IO and
POSIX are still widely used, while object storage APIs such as DAOS [7] are emerging.
If the performance characteristics of S3 are promising, it could be used as an alternative
backend for HPC applications. This interoperability would foster convergence between
HPC and Cloud [8,9] and eventually lead to consistent data access and exchange between
HPC applications across data centers and the cloud.

In this research, a methodology and a set of tools to analyze the performance of
the S3 API are provided. The contributions of this article are: (a) The modification of
existing HPC benchmarks to quantify the performance of the S3 API by displaying relevant

Appl. Sci. 2021, 11, 8540. https://doi.org/10.3390/app11188540 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5962-0824
https://orcid.org/0000-0002-6915-1179
https://doi.org/10.3390/app11188540
https://doi.org/10.3390/app11188540
https://doi.org/10.3390/app11188540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188540
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188540?type=check_update&version=2

Appl. Sci. 2021, 11, 8540 2 of 16

performance characteristics and providing a deep analysis of the latency of individual
operations; (b) the creation of a high-performance I/O library called S3Embedded [10],
which can be used as a drop-in replacement of the commonly used libs3 [11], and which is
also compatible and competitive with the HPC I/O protocols, and optimized for use in
distributed environments.

The structure of this paper is as follows: Section 1.1 presents related work. Section 2
describes the test scenarios and defines the relevant metrics that will be addressed using
our benchmarks. We extend the scope of two existing HPC MPI-parallel benchmarks,
namely the IO500 [12] and MDWorkbench [13], to assess the performance of the S3 API.
Section 3 describes the experimental procedure, the used systems, and the methodology
of the evaluation conducted in this work. The tests are performed on the Mistral [14]
Supercomputer. Section 3.2.3 analyzes the obtained latency results. Section 4 introduces
the S3Embeded library and its possible use. The last section summarizes our findings.

1.1. Background and Related Work

After the release of the Amazon S3 service in 2006, many works were published to
assess the performance of this offering. Some of them [15,16] focused only on the download
performance of Amazon S3, most of them [15–19] never published or described the used
benchmarks, others [15,16,20] are not able to assess S3 compatible storage. The Perfkit
benchmarker from Google was used in [21] to compare the download performance of
AWS S3 in comparison with Google Cloud Storage (GCS) and Microsoft Azure Storage.
However, since the tests were accomplished in the cloud, the obtained results depend
heavily on the VM machine type in use, hence, on the network limitation enforced by
the cloud provider; adding to the confusion, and in contrast, [19] found in their tests,
which were also run in the AWS cloud on different EC2 machines against the Amazon
S3 implementation, that “there is not much difference between the maximum read/write
throughput across instances”.

In [22], the performance of the S3 interface offered by some cloud providers is eval-
uated. However, the test scenario covered only the upload and download of a variable
number of files. Access patterns of typical HPC applications, like the performance of the
metadata handling, are not covered.

Gadban et al. [23] investigated the overhead of the REST protocol when using Cloud
services for HPC Storage and found that REST can be a viable, performant, and resource-
efficient solution for accessing large files, but for small files, a lack of performance was
noticed. However, the authors did not investigate the performance of a cloud storage
system like S3 for HPC workloads.

The benchmarks we found in the literature for the analysis of S3 performance do
not provide a detailed latency profile, nor do they support parallel operations across
nodes, which is a key characteristic of HPC applications. As such, the lack of published
tools that cover HPC workloads pushed us to enhance two benchmarks already used for
HPC procurement, namely IOR and MD-Workbench, by developing a module capable of
assessing the performance of S3 compatible storage. The IO500 benchmark (https://io500
.org (accessed on 23 April 2021) simulates a variety of typical HPC workloads, including
the bulk creation of output files from a parallel application, intensive I/O operations on a
single file, and the post-processing of a subset of files. The IO500 uses the IOR and MDTest
benchmarks under the hood, which comes with a legacy backend for S3 using the outdated
aws4c [24] library that stores all data in a single bucket; as such, a file is one object that is
assembled during write in the parallel job using multipart messages. However, since most
recent S3 implementations do not support this procedure, the use of a most recent library
is required. We also explore the performance of interactive operations on files using the
MD-Workbench [13].

https://io500.org
https://io500.org

Appl. Sci. 2021, 11, 8540 3 of 16

2. Materials and Methods

We aim to analyze the performance of the S3 interface of different vendors in an
HPC environment to assess the performance potential of the S3 API. To achieve this, a
five step procedure is implemented by (1) identifying suitable benchmarks; (2) modifying
the benchmark to support S3; (3) defining an HPC environment supporting the S3 API
to run them; (4) determining a measurement protocol that allows us to identify the main
factors influencing the performance of S3 for HPC workloads; and (5) providing alternative
implementations for S3 to estimate the best performance.

2.1. Benchmarks

We extend two HPC benchmarks, the IO500 and MD-Workbench, to analyze the
potential peak performance of the S3 API on top of the existing HPC storage infrastructure.

The IO500 [12] uses IOR and MDTest in “easy” and “hard” setups, and hence performs
various workloads and delivers a single score for comparison, and the different access
patterns are covered in different phases:

• IOEasy simulating applications with well-optimized I/O patterns.
• IOHard simulating applications that utilize segmented input to a shared file.
• MDEasy simulating metadata access patterns on small objects.
• MDHard accessing small files (3901 bytes) in a shared bucket.

We justify the suitability of these phases as follows: B. Welch and G. Noer [25] found
that, inside HPC, between 25% and 90% of all files are 64 Kbytes or less in size, as such
a typical study of the performance of object storage inside HPC should also address
this range, rather than only focusing on large sizes, which are expected to deliver better
performance and only be limited by the network bandwidth [21,23]. This is why, using the
IOR benchmark, we highlight this range when exploring the performance for files of size
up to 128 MB in Sections 3.2 and 4. Large file sizes are also addressed since the performed
IO500 benchmarks operate on 2 MiB accesses creating large aggregated file sizes during a
300 s run.

MD-Workbench [13] simulates concurrent access to typically small objects and reports
throughput and latency statistics, including the timing of individual I/O operations. The
benchmark executes three phases: pre-creation, benchmark, and cleanup. The pre-creation
phase setups the working set, while the cleanup phase removes it. A pre-created environ-
ment that is not cleaned can be reused for subsequent benchmarks to speed up regression
testing, i.e., constant monitoring of performance on a production system. During the
benchmark run, the working set is kept constant: in each iteration, a process produces one
new object and then consumes a previously created object in FIFO order.

2.2. Modifications of Benchmarks

For IO500, an optimistic S3 interface backend using the libS3 client library is imple-
mented for IOR in the sense that it stores each fragment as one independent object, and as
such, it is expected to generate the best performance for many workloads.

For identifying bottlenecks, it supports two modes:

• Single bucket mode: created files and directories result in one empty dummy object
(indicating that a file exists), every read/write access happens with exactly one object
(file name contains the object name + size/offset tuple); deletion traverses the prefix
and removes all the objects with the same prefix recursively.

• One bucket per file mode: for each file, a bucket is created. Every read/write access
happens with exactly one object (object name contains the filename + size/offset
tuple); deletion removes the bucket with all contained objects.

As such, the libs3 implementation gives us the flexibility to test some optimistic
performance numbers. The S3 interface does not support the “find” phase of IO500, which
we, therefore, exclude from the results.

MD-Workbench recognizes datasets and objects and also offers two modes:

Appl. Sci. 2021, 11, 8540 4 of 16

• One bucket, the D datasets are prefixed by the process rank.
• One bucket per dataset.

In both modes, objects are atomically accessed fitting directly the S3 API.
The libS3 used in IO500 is the latest one which only supports AWS signatures v4 [26]

while the current release of MD-Workbench supports an older version of libs3, which uses
the AWS signature v2. As such, it is ideal for the benchmarking of some S3 compatibles
systems that only support the v2 signature, like the one found at DKRZ (The German
Climate Computing Center).

2.3. Utilizing S3 APIs in Data Centers

Data centers traditionally utilize parallel file systems such as Lustre [27] and GPFS.
These storage servers do not natively support the S3 API. In a first iteration, we explore
MinIO to provide S3 compatibility on top of the existing infrastructure. MinIO offers
various modes, one of which is a gateway mode providing a natural deployment mode:
in this mode, any a S3 request is converted to POSIX requests for the shared file system.
We show the effect of the object size for the different MinIO modes, and we compare
the obtained results to the native REST protocol and Lustre. To achieve the convergence
between HPC and the Cloud, it needs to be possible to move workloads seamlessly between
both worlds. We aim to allow the huge number of S3 compatible applications, the possibility
to benefit from HPC performance while using the same compatibility offered by the S3
interface. Therefore, we create an I/O library called S3Embedded based on libs3, where
parts of the S3 stack were replaced or removed to optimize the performance, this library
also performs the translation between S3 and POSIX inside the application address space.
Our aim is to make it compatible with standard services, competitive with the HPC I/O
protocols, and optimized for use in distributed environments. Additionally, the extended
library S3remote is introduced, it is intended to provide a local gateway on each node—an
independent process similar to MinIO—but uses a binary protocol over TCP/IP for local
communication instead of HTTP as HTTP might be the cause of the observed performance
issues. In Section 4, we assess the performance of S3Embedded/S3Remote inside HPC.

2.4. Measurement Protocol

We measure the performance on a single node and then on multiple nodes while
varying the size of the object and the number of processes/threads per node. To assess
the performance of the different modes, we establish performance baselines by measuring
performance for the network, REST, and the Lustre file system. Then, the throughput is
computed (in terms of MiB/s and Operations/s) and compared to the available network
bandwidth of the nodes.

2.5. Test System

The tests are performed on the Supercomputer Mistral [14], the HPC system for earth-
system research provided at the German Climate Computing Center (DKRZ). It provides
3000 compute nodes each equipped with an FDR Infiniband interconnect and a Lustre
storage system with 54 PByte capacity distributed across two file systems. The system
provides two 10 GBit/s Internet uplinks to the German research network (DFN) that is
accessible on a subset of nodes.

2.6. MinIO Benchmarks in HPC

To create a reference number for the performance of S3 and explore the possible ways
to optimize performance, we first use the MinIO server (release: 2020-08-18T19-41) to
accomplish our tests using the modified benchmarks inside our HPC environment.

MinIO Deployment

MinIO supports the following modes of operation:

Appl. Sci. 2021, 11, 8540 5 of 16

• Standalone (sa): runs one MinIO server on one node with a single storage device. We
test configurations from tmpfs (in-memory fs/shm) and the local ext4 file system.

• Distributed servers (srv): runs on multiple nodes, object data and parity are striped
across all disks in all nodes. The data are protected using object-level erasure coding
and bitrot. Objects are accessible from any MinIO server node. In our setup, each
server uses the local ext4 file system. Figure 1a illustrates the deployment.

• Gateway (gw): adds S3 compatibility to an existing shared storage. On Mistral, we use
the Lustre distributed file system as the backend file system as seen in Figure 1b.

Alongside these three modes, we introduce two modes by inserting the Nginx [28]
(v1.18.0) load balancer in front of the distributed and gateway configurations, and we refer
to these setups as srv-lb and gw-lb, respectively. Both variants can utilize a cache on the
Nginx load balancer (-cache).

(a) Distributed Servers mode. (b) Gateway mode.

Figure 1. Different MinIO Modes.

3. Results
3.1. MinIO Benchmarks in HPC Environment
3.1.1. Single Client

The first tests are performed using IOR [29] directly. Figures 2 and 3 show the
performance on 1 node for a variable object size for the different MinIO modes. We notice
that the standalone mode shows the best performance. Gateway mode is effective for reads,
but slow for writes. Write performance is 1/3rd of the read performance. Compared to the
Infiniband network throughput (about 6 GiB/s), only 7.5% and 2.5% of this performance
can be obtained for read and write, respectively. Adding a load balancer has minimal
influences on throughput in this setting, except when activating the caching mechanism,
which has a tremendous impact on the read throughput.

3.1.2. Parallel IO

We investigate how much parallel IO is able to exploit the available network bandwidth
by varying the number of clients accessing the object store. Assuming an ideal scenario, we
start MinIO in standalone mode with RAM as backend (sa-shm) on one node. Figures 4 and 5
show the aggregated throughput across another four client nodes, demonstrating the scale-out
throughput achieved across many tasks running on various nodes.

Appl. Sci. 2021, 11, 8540 6 of 16

Figure 2. Read throughput for MinIO modes for 1 node and 1 PPN.

Figure 3. Write throughput for MinIO modes for 1 node and 1 PPN.

Appl. Sci. 2021, 11, 8540 7 of 16

(a) Read throughput. (b) Read operations/s.

Figure 4. Aggregated read throughput for N tasks on 4 nodes.

(a) Write throughput. (b) Write operations/s.

Figure 5. Aggregated write throughput for N tasks on 4 nodes.

We notice that when increasing the number of tasks per node, we achieve the best
throughput (about 6000 MiB/s). The performance per client node is 1.5 GiB/s. For the
single server, it is close to the available network bandwidth. The I/O path is limited by
latency, while with 4 threads (PPN = 1), about 1000 Ops/s are achieved, with 160 threads
about 6000 Ops/s can be achieved. Write achieves about 2500 MiB/s (40% efficiency) and
250 Ops/s, indicating some limitations in the overall I/O path. This also fosters splitting
data larger than 1 MiB into multiple objects and using multipart [30] upload/download.

Appl. Sci. 2021, 11, 8540 8 of 16

3.1.3. MinIO Overhead in Gateway Mode

A more realistic scenario inside HPC is MinIO running in Gateway mode in front of
Lustre. First, we launch the benchmarks on 4 client nodes, and MinIO is started in gateway
mode on another set of nodes. We call this setup the disjoint mode.

However, this setup does not scale out efficiently, and this leads us to the introduction
of another concept, which we call the local gateway (local-gw) mode, where MinIO is
started on the N client nodes in gateway mode and uses the Lustre file system as the
backend file system. We launch the benchmarks against the localhost on each node and
notice that when increasing the number of tasks per node, we are achieving relatively
better performance, compared to the disjoint mode, as shown in Table 1. However, we still
achieve only 2% of Lustre performance for various benchmarks.

Table 1. Performance of MinIO Gateway on 4 nodes with 20 PPN.

Lustre MinIO Local-Gw
Benchmark Metric Unit Disjoint-Gw Local-Gw % of Lustre

md-workbench rate IOPS 18337 37 425 2.3%
throughput MiBps 34.100 0.100 0.800 2.3%

IO500

ior-easy-write GiB/s 18.671 0.153 0.286 1.5%
mdtest-easy-write kIOPS 5.892 0.088 0.132 2.2%

ior-hard-write GiB/s 0.014 0.003 0.006 45.7%
mdtest-hard-write kIOPS 5.071 0.036 0.076 1.5%

ior-easy-read GiB/s 11.475 0.693 2.071 18.1%
mdtest-easy-stat kIOPS 24.954 1.198 4.092 16.4%

ior-hard-read GiB/s 0.452 0.029 0.094 20.7%
mdtest-hard-stat kIOPS 18.296 1.281 3.968 21.7%

mdtest-easy-delete kIOPS 9.316 0.025 0.023 0.3%
mdtest-hard-read kIOPS 6.950 0.449 1.636 23.5%

mdtest-hard-delete kIOPS 4.863 0.029 0.025 0.5%

Nevertheless, we notice that increasing the number of clients and the tasks per client
leads to an increase in the number of “Operation timed out” errors. An issue that we
address in Section 4.

3.1.4. MinIO vs. REST vs. TCP/IP

To understand performance limitations, we plot the throughput of various transfer
modes using one node and four processes in Figure 6. The figure includes performance
numbers from [23], where the base performance of REST/HTTP is analyzed by emulating a
best-case client/server scenario: The throughput of the HTTP GET operation—representing
read-only access to a storage server—is calculated for different file sizes. We conduct the
same experiments on Mistral, using tmpfs as backend. Since the tests are accomplished
against localhost, we can compare the obtained results with the IOR results of the single
client MinIO setup described in Section 3.1.1, where MinIO is running in standalone mode
with RAM as backend, and using 1Node-4PPN as well. We also include:

• The IOR results of the direct lustre access using 1N-4PPN.
• The TCP/IP throughput measured using iperf.
• For reference, the S3Embedded results for a similar setup (1N-4PPN), which we will

describe in more detail later in Section 4.

The results show that for objects with size greater than 1 KB, MinIO performance—
even in this ideal setup—is significantly lower than the base REST performance and that
there is room for improvement, which we address in Section 4.

Appl. Sci. 2021, 11, 8540 9 of 16

Figure 6. Read throughput MinIO vs. REST using 1N-4PPN.

3.2. Tests against S3 Compatible Systems

The next benchmarks are performed on Mistral using IO500 and MD-Workbench.

3.2.1. In-House Tests

Tests are conducted against the OpenStack Swift [3] system already available in DKRZ,
Swift version 2.19.2 is used, and the S3 interface is implemented using Swift3 version 1.12.1,
which is now merged into swift middleware as the s3api; this is why only AWS signature
v2 is available, and as such, the tests were only conducted using MD-Workbench. On
four client nodes and with 20 PPN, a rate of 269.5 IOPs and a 0.5 MiB/s throughput are
observed during the benchmark phase with MD-Workbench. Table 1 shows the IO500
results for the different systems tested inside DKRZ.

3.2.2. Comparison with Scality Ring

Next, we compare the performance of the MinIO obtained results in Section 3.1.2 to
the results of another S3 compatible storage called Scality Ring published in [31]. Scality
Ring is a cloud-scale, distributed software storage solution that includes a comprehensive
AWS S3 REST API implementation. We are aware that this is not a fair comparison, but it
gives us a qualitative comparison that validates that our results are reasonable. In the setup
described in [31], RING is deployed on Cisco Networking equipment much similar to the
HPC network environment provided by Mistral. For the sake of simplicity, the server CPU
capabilities are considered equivalent (Intel Xeon Silver 4110 vs. Intel Xeon E5-2680 v3).
The published cosbench [32] results in [31], from the benchmarks launched on 3 nodes
with 300 threads are compared to the MinIO Parallel IO results described in Section 3.1,
which are also started on 3 nodes with a total of 144 threads (no Hyperthreading). The
comparison is shown in Figure 7.

We can see that although the write throughput is relatively similar for files smaller than
32 MB, the read throughput of MinIO is better. Scality has an advantage for writes below
16 MiB because about twice the number of threads is used. Based on these measurements,
we presume that Scality does not yield a significant performance benefit over MinIO.

Appl. Sci. 2021, 11, 8540 10 of 16

Figure 7. Throughput of Scality Ring and MinIO on 3 nodes.

3.2.3. Latency Analysis

MD-Workbench reports not only the throughput, but also the latency statistics for
each I/O operation. The density of the individually timed operations is plotted as shown
in Figure 8. A density graph can be considered a smoothed histogram where the x-axis
shows the observed runtime and the y-axis represents the number of occurrences.

๐

๏

๎

ํ

์

๏ป ๐ํ ๏ป ๐๏ ๏ป๕๐๏

ฎซฒฌทณป

ฌงฐป ฝฎปฟฌป ฎปฟผ ผปดปฌป ญฌฟฌ

1 × 10 3 1 × 10 1 1 × 101

(a) Lustre.

๐

๏

๎

ํ

๏ป๓๐ํ ๏ป๓๐๏ ๏ป๕๐๏

ฎซฒฌทณป

ฌงฐป ฝฎปฟฌป ฎปฟผ ผปดปฌป ญฌฟฌ

1 × 10 3 1 × 10 1 1 × 101

(b) MinIO local-gw

๐

๎

์

๊

๏ป๓๐ํ ๏ป๓๐๏ ๏ป๕๐๏

ฎซฒฌทณป

ฌงฐป ฝฎปฟฌป ฎปฟผ ผปดปฌป ญฌฟฌ

1 × 10 3 1 × 10 1 1 × 101

(c) MinIO disjoint.

๐

๏๐

๎๐

๏ป ๐ํ ๏ป ๐๏ ๏ป๕๐๏

ฎซฒฌทณป

ฌงฐป ฝฎปฟฌป ฎปฟผ ผปดปฌป ญฌฟฌ

1 × 10 3 1 × 10 1 1 × 101

(d) SwiftS3.

Figure 8. Latency density for the different systems.

The Lustre density figure shows roughly a Gaussian distribution for individual opera-
tions, where create is the slowest operation.

Using MinIO, the creation phase takes substantially longer. The local-gw mode, as
already seen from the IO500 results, yields the best performance among the tested S3
implementations; however, far from the Lustre performance, which has a latency of around
10 ms and is extremely slow compared to the network base latency of approximately

Appl. Sci. 2021, 11, 8540 11 of 16

10 µs. The SwiftS3 system changes the overall behavior significantly, leading to less
predictable times.

We conclude that the involved processes behind the S3 implementation are the main
cause of latency.

3.2.4. Tests against Cloud Systems

Different S3 vendors were contacted, which either offered a testing account or explic-
itly allowed us to execute the IO500 benchmark against their endpoints. We follow the
guidelines depicted by the performance design patterns for Amazon S3 [33], especially
regarding the request parallelization and horizontal scaling to help distribute the load over
multiple network paths. Since all the providers offer multi-region storage, we choose the
closest storage location to Mistral (located in the EU) to ensure the lowest latency. Due to
the limited number of nodes with Internet connectivity on Mistral, the benchmarks are
launched on only two nodes with PPN = 1. The results are summarized in Table 2; we
scaled down the units by 1000 to better visualize the differences. The results of MinIO
launched in local-gw mode—with the same number of nodes and tasks per node—are
displayed in the last column.

Table 2. IO500 results comparing S3 Cloud providers.

Benchmark/System Unit Wasabi IBM Google MinIO-Local-Gw

Score Bandwidth MiB/s 0.007 1.642 0.46 12.62
ior-easy-write MiB/s 2.35 35.00 13.35 46.39

mdtest-easy-write IOPS 13.04 81.72 21.79 27.96
ior-rnd-write MiB/s 0.01 0.23 0.07 1.231

mdworkbench-bench IOPS 5.75 47.23 12.83 15.25
ior-easy-read MiB/s 1.20 45.37 7.81 73.86

mdtest-easy-stat IOPS 20.92 145.09 51.10 260.97
ior-hard-read MiB/s 0.05 5.59 1.38 6.01

mdtest-hard-stat IOPS 20.74 149.64 49.48 297.62
mdtest-easy-delete IOPS 10.35 35.02 9.37 81.06
mdtest-hard-read IOPS 8.54 70.06 18.90 130.36

mdtest-hard-delete IOPS 10.28 35.25 9.48 94.32

The IBM Cloud Storage provided the best performance in our tests; however, this is
far from the performance expected in HPC. Although MinIO in gateway mode provides
better performance, this is also below our HPC experience since the network latency, in this
case, is minimal compared to the other scenarios. A better solution is needed to leverage
existing file systems found either inside or outside the HPC environment, as can be seen in
Section 4. Note that some of the mentioned providers might provide better performance
when using their native interface instead of S3; however, this is outside the scope of this
work. Furthermore, the network interconnection between DKRZ and the cloud provider
bears additional challenges.

4. S3Embedded

Because of the scalability limitation of the introduced local-gw mode, we create an
I/O library called S3Embedded based on libs3, where parts of the S3 stack are replaced
or removed to optimize the performance. By easily linking the S3Embedded library at
compile time or at runtime to a libS3 compatible client application, it is possible to use the
capabilities of this library. Assuming the availability of a globally accessible shared file
system, S3Embedded provides the following libraries:

• libS3e.so: This is an embedded library wrapper that converts libs3 calls to POSIX calls
inside the application address space.

• libS3r.so: This library converts the libs3 calls via a binary conversion to TCP calls to a local
libS3-gw application that then executes these POSIX calls, bypassing the HTTP protocol.

Appl. Sci. 2021, 11, 8540 12 of 16

In Figure 9, we display the results of the IOR benchmark while using the libraries
mentioned above, in comparison with direct Lustre access and MinIO operating in the
local-gw mode already described in Section 3. Note that some values are missing in
the MinIO-local-gw results, despite the benchmark being repeated several times. This is
because this setup does not scale well with the number of clients, as noted in Section 3.

Using S3Embedded helped us to pinpoint a performance problem in the IOR S3 plugin:
we noticed that the delete process in IO500 is time-consuming since when trying to delete
a bucket, our developed IOR S3 plugin tries to list the content of the entire bucket—calling
S3_list_bucket()—for each file to be deleted to clean the fragments; however, since, in case
of S3Embeded, all files are actually placed in a single directory, this ought to be very time-
consuming. One workaround is to use the option bucket-per-file that effectively creates a direc-
tory per file. However, since this workaround does not cover all test workloads in the IO500,
we proceed and introduce an environment variable called “S3LIB_DELETE_HEURISTICS”,
specific to the IOR S3-plugin. It defines at which file size of the initial fragment the list_bucket
operation is to be executed; otherwise, a simple S3_delete_object is performed. While this
optimization is not suitable for a production environment, it allows us to determine best-case
performance for using S3 with the IO500 benchmark.

Figure 9. Read throughput of S3Embedded vs. Lustre vs. MinIO for 5N-20PPN.

The results delivered by S3Embedded are very close to the ones obtained for the
Lustre direct access—mainly for files larger than 32 MB—far superior to the ones supplied
by MinIO-local-gw, they are also free from timeout errors.

Benchmarking with IO500 reflects the performance improvement delivered by
S3Embedded/S3Remote, as shown in Table 3.

Table 3. IO500 results for S3Embedded and S3Remote compared to MinIO-local-gw and lustre using
2N-5PPN.

System Unit MinIO-Local-Gw Lustre S3Embedded S3Remote

ior-easy-write GiB/s 0.14 5.47 0.61 0.69
mdtest-easy-write kIOPS 0.09 7.97 2.42 3.13

ior-easy-read GiB/s 0.32 2.78 0.48 0.42
mdtest-easy-stat kIOPS 0.85 13.82 8.02 6.94

ior-hard-read GiB/s 0.019 0.139 0.046 0.042
mdtest-hard-stat kIOPS 0.86 5.10 7.25 6.65

Appl. Sci. 2021, 11, 8540 13 of 16

We notice that Lustre’s performance with POSIX is often more than 10x faster than
MinIO-local-gw, and that the error rate increases along with the number of Nodes/PPN. In
contrast, the S3 API wrappers deliver much better performance, which is closer to Lustre
native performance, and are more resilient to the number of clients, as shown in Table 4.

Even with 10 or 50 Nodes, as seen in Tables 5 and 6, the S3embedded library yields a
performance closer to Lustre, but a performance gap remains.

Table 4. IO500 results for S3Embedded and S3Remote compared to MinIO-local-gw and lustre using
5N-20PPN.

Benchmark/System Unit MinIO-Local-Gw Lustre S3Embedded S3Remote

ior-easy-write GiB/s 0.75 23.49 3.40 1.99
mdtest-easy-write kIOPS 0.39 17.11 7.52 1.19

ior-hard-write GiB/s 0.01 0.04 0.30 0.05
mdtest-hard-write kIOPS 0.10 7.25 3.41 0.55

ior-easy-read GiB/s 2.46 15.87 2.40 1.36
mdtest-easy-stat kIOPS 5.09 42.59 28.53 0.62

ior-hard-read GiB/s 0.11 0.38 0.11 0.02
mdtest-hard-stat kIOPS 4.37 31.49 26.66 0.60

mdtest-easy-delete kIOPS - 9.15 5.98 0.41
mdtest-hard-read kIOPS - 6.34 3.82 0.29

mdtest-hard-delete kIOPS - 6.27 5.04 0.41

Table 5. IO500 results for Lustre vs. S3Embedded using 10N-1PPN.

Benchmark/System Unit Lustre S3Embedded S3Remote

ior-easy-write GiB/s 3.202073 0.990504 0.827451
mdtest-easy-write kIOPS 13.548102 11.819631 0.240857

ior-hard-write GiB/s 0.015462 0.215551 0.010041
mdtest-hard-write kIOPS 5.615789 2.226332 0.111696

ior-easy-read GiB/s 7.483045 0.375538 0.311502
mdtest-easy-stat kIOPS 21.884679 20.489986 0.123976

ior-hard-read GiB/s 0.095884 0.022462 0.005101
mdtest-hard-stat kIOPS 17.428926 6.90457 0.125178

mdtest-easy-delete kIOPS 8.995095 7.77739 0.10289
mdtest-hard-read kIOPS 0.184843 1.287055 0.249273

mdtest-hard-delete kIOPS 8.108844 6.711771 0.249282

Table 6. IO500 results for Lustre vs. S3Embedded using 50N-1PPN.

Benchmark/System Unit Lustre S3Embedded S3Remote

ior-easy-write GiB/s 16.262279 5.363676 1.516302
mdtest-easy-write kIOPS 18.104786 15.952838 1.111315

ior-hard-write GiB/s 0.030967 0.375326 0.032984
mdtest-hard-write kIOPS 13.705966 4.337179 0.361589

ior-easy-read GiB/s 43.390676 2.817122 1.309052
mdtest-easy-stat kIOPS 46.662299 45.878814 0.620202

ior-hard-read GiB/s 0.218977 0.128423 0.025549
mdtest-hard-stat kIOPS 43.834921 44.443974 0.62586

mdtest-easy-delete kIOPS 9.322632 9.262801 0.585572
mdtest-hard-read kIOPS 4.079555 6.673985 1.246393

mdtest-hard-delete kIOPS 8.457431 6.377992 1.246105

Some MDTest results show a better performance in the case of S3Embedded than
Lustre, although for both Lustre and S3Embedded, the stat() call is used. This might be
due to the way S3Embedded implements S3_test_bucket(), where the size and rights for
the directory and not of the actual file are captured, which seems to be faster.

Appl. Sci. 2021, 11, 8540 14 of 16

The radar chart in Figure 10 shows the relative performance of S3embedded and
S3remote in percent for three independent runs of all benchmarks. Note that the three
Lustre runs are so similar that they overlap in the figure. The graph clearly shows the
performance gaps of the two libraries. For the sake of comparison, all relative performance
numbers for the run with s3embr-3 are listed. Only for the ior-hard-write phase, the number
is close to 100%, while it often achieves 5-10% of Lustre performance. The embedded library
also lacks performance for some benchmarks, but is much better.

 ior-easy-write
 ior-hard-write

 ior-easy-read

 ior-hard-read

 mdtest-easy-write

 mdtest-easy-statmdtest-easy-delete

 mdtest-hard-write

 mdtest-hard-stat

 mdtest-hard-read

mdtest-hard-delete

1.00

10.00

100.00

1000.00

11.50

98.12

7.98

5.24

6.97

1.29

6.35
7.30

1.98

10.85

18.78

lustre-1 lustre-2 lustre-3

s3emb-1 s3emb-2 s3emb-3

s3embr-1 s3embr-2 s3embr-3

Figure 10. IO500 results of different runs using 5N-20PPN.

5. Conclusions

The S3 API is the de facto standard for accessing Cloud storage; this is why it is the
component of choice when building cloud-agnostic applications. By amending IO500
to benchmark the S3 interface, we broaden the scope of the IO500 usage and enable the
community to track the performance growth of S3 over the years and analyze changes
in the S3 storage landscape, which will encourage the sharing of best practices for per-
formance optimization. Unfortunately, the obtained results in Section 3 indicate that S3
implementations such as MinIO are not yet ready to serve HPC workloads because of the
drastic performance loss and the lack of scalability.

We believe that the remote access to S3 is mainly responsible for the performance loss
and should be addressed. We conclude that S3 with any gateway mode is not yet a suitable
alternative for HPC deployment as the additional data transfer without RDMA support is
pricey. However, as the experimentation in Section 4 shows, an embedded library could be
a viable way to allow existing S3 applications to use HPC storage efficiently. In practice,
this can be achieved by linking to an S3 library provided by the data center.

By introducing S3Embedded, a new light-weight drop-in replacement for libs3, we
investigate the cause of the performance loss while providing a road toward Cloud-HPC
agnostic applications that can be seamlessly run in the public cloud or HPC.

Appl. Sci. 2021, 11, 8540 15 of 16

Future Work

In the future, we aim to improve the S3embeded library further and explore the
conversion from S3 to non-POSIX calls. We also intend to run large-scale tests against
Cloud/Storage vendors on their HPC ecosystems to compare the S3 API performance.
Ultimately, our goal is to identify which APIs are needed for HPC applications to gain
optimal performance while supporting HPC and Cloud convergence.

Author Contributions: Conceptualization, F.G. and J.K.; methodology, F.G. and J.K.; software, F.G.
and J.K.; validation, F.G. and J.K.; formal analysis, F.G. and J.K.; investigation, F.G.; resources, F.G.;
data curation, F.G. and J.K.; writing—original draft preparation, F.G.; writing—review and editing,
F.G. and J.K.; visualization, F.G. and J.K.; supervision, J.K.; project administration, J.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data produced by the experiments conducted in this paper can be
found in https://github.com/Frankgad/s3-performance-analysis-paper (accessed on 19 July 2021).

Acknowledgments: The authors thank the DKRZ for providing the CPU hours to conduct the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. AWS. AWS S3. Available online: https://aws.amazon.com/de/s3/ (accessed on 19 July 2019).
2. Weil, S.A.; Brandt, S.A.; Miller, E.L.; Long, D.D.; Maltzahn, C. Ceph: A scalable, high-performance distributed file system.

In Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seattle WA, USA, 6–8 November 2006;
pp. 307–320.

3. Foundation, O. OpenStack Swift. Available online: https://github.com/openstack/swift (accessed on 19 September 2020).
4. MinIO, I. Kubernetes Native,High Performance Object Storage. Available online: https://min.io (accessed 19 September 2020).
5. Rew, R.; Davis, G. NetCDF: An interface for scientific data access. IEEE Comput. Graph. Appl. 1990, 10, 76–82. [CrossRef]
6. Lofstead, J.F.; Klasky, S.; Schwan, K.; Podhorszki, N.; Jin, C. Flexible IO and integration for scientific codes through the adaptable

IO system (ADIOS). In Proceedings of the 6th International Workshop on Challenges of Large Applications in Distributed
Environments,Boston, MA, USA, 23 June 2008; pp. 15–24.

7. Lofstead, J.; Jimenez, I.; Maltzahn, C.; Koziol, Q.; Bent, J.; Barton, E. DAOS and friends: A proposal for an exascale storage system.
In Proceedings of the SC’16 International Conference for High Performance Computing, Networking, Storage and Analysis,
Salt Lake City, UT, USA, 13–18 November 2016; pp. 585–596.

8. Jamal, A.; Fleiner, R.; Kail, E. Performance Comparison between S3, HDFS and RDS storage technologies for real-time big-data
applications. In Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and
Informatics (SACI), Timisoara, Romania, 19–21 May 2021; pp. 000491–000496.

9. Milojicic, D.; Faraboschi, P.; Dube, N.; Roweth, D. Future of HPC: Diversifying Heterogeneity. In Proceedings of the 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 276–281.

10. S3EmbeddedLib. Available online: https://github.com/JulianKunkel/S3EmbeddedLib (accessed on 9 December 2020).
11. bji. libs3. Available online: https://github.com/bji/libs3 (accessed on 19 August 2020).
12. Kunkel, J.; Lofstead, G.F.; Bent, J. The Virtual Institute for I/O and the IO-500; Technical Report; Sandia National Lab. (SNL-NM):

Albuquerque, NM, USA, 2017.
13. Kunkel, J.M.; Markomanolis, G.S. Understanding metadata latency with MDWorkbench. In Proceedings of the International

Conference on High Performance Computing, Frankfurt, Germany, 24–28 June 2018; pp. 75–88.
14. DKRZ. Mistral. Available online: https://www.dkrz.de/up/systems/mistral/configuration (accessed on 19 July 2020).
15. Garfinkel, S. An Evaluation of Amazon’s Grid Computing Services: EC2, S3, and SQS; Technical Report TR-08-07, Harvard Computer

Science Group: Cambridge, MA, USA, 2007 Available online: http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568 (accessed
on 19 July 2021).

16. Palankar, M.R.; Iamnitchi, A.; Ripeanu, M.; Garfinkel, S. Amazon S3 for science grids: A viable solution? In Proceedings of the
2008 International Workshop on Data-Aware Distributed Computing,Boston, MA, USA, 24 June 2008; pp. 55–64.

17. Bessani, A.; Correia, M.; Quaresma, B.; André, F.; Sousa, P. DepSky: Dependable and secure storage in a cloud-of-clouds. ACM
Trans. Storage (Tos) 2013, 9, 1–33. [CrossRef]

https://github.com/Frankgad/s3-performance-analysis-paper
https://aws.amazon.com/de/s3/
https://github.com/openstack/swift
https://min.io
http://doi.org/10.1109/38.56302
https://github.com/JulianKunkel/S3EmbeddedLib
https://github.com/bji/libs3
https://www.dkrz.de/up/systems/mistral/configuration
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829568
http://dx.doi.org/10.1145/2535929

Appl. Sci. 2021, 11, 8540 16 of 16

18. Arsuaga-Ríos, M.; Heikkilä, S.S.; Duellmann, D.; Meusel, R.; Blomer, J.; Couturier, B. Using S3 cloud storage with ROOT and
CvmFS. J. Phys. Conf. Ser. Iop Publ. 2015, 664, 022001. [CrossRef]

19. Sadooghi, I.; Martin, J.H.; Li, T.; Brandstatter, K.; Maheshwari, K.; de Lacerda Ruivo, T.P.P.; Garzoglio, G.; Timm, S.; Zhao, Y.;
Raicu, I. Understanding the performance and potential of cloud computing for scientific applications. IEEE Trans. Cloud Comput.
2015, 5, 358–371. [CrossRef]

20. Google. PerfKit Benchmarker. Available online: https://github.com/GoogleCloudPlatform/PerfKitBenchmarker (accessed on
19 July 2020).

21. Bjornson, Z. Cloud Storage Performance. Available online: https://blog.zachbjornson.com/2015/12/29/cloud-storage-
performance.html (accessed on 19 July 2020).

22. Liu, Z.; Kettimuthu, R.; Chung, J.; Ananthakrishnan, R.; Link, M.; Foster, I. Design and Evaluation of a Simple Data Interface
for Efficient Data Transfer across Diverse Storage. ACM Trans. Model. Perform. Eval. Comput. Syst. (TOMPECS) 2021, 6, 1–25.
[CrossRef]

23. Gadban, F.; Kunkel, J.; Ludwig, T. Investigating the Overhead of the REST Protocol When Using Cloud Services for HPC Storage.
In Proceedings of the International Conference on High Performance Computing, Frankfurt am Main, Germany, 22–25 June 2020;
pp. 161–176.

24. Korolev, V. AWS4C—A C Lbrary to Interface with Amazon Web Services. Available online: https://github.com/vladistan/aws4c
(accessed on 19 August 2020).

25. Welch, B.; Noer, G. Optimizing a hybrid SSD/HDD HPC storage system based on file size distributions. In Proceedings of the
2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), Long Beach, CA, USA, 6–10 May 2013; pp. 1–12.

26. bji. libs3 Removes Support for Signature V2. Available online: https://github.com/bji/libs3/pull/50 (accessed on 19 August
2020).

27. Braam, P. The Lustre storage architecture. arXiv 2019, arXiv:1903.01955.
28. Sysoev, I. Nginx. Available online: https://nginx.org (accessed on 19 July 2020).
29. LLNL. IOR Parallel I/O Benchmarks. Available online: https://github.com/hpc/ior (accessed on 19 September 2020).
30. AWS. Multipart Upload Overview. Available online: https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

(accessed on 19 July 2020).
31. Walsdorf, O. Cisco UCS C240 M5 with Scality Ring. Available online: https://www.cisco.com/c/en/us/td/docs/unified_

computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html#_Toc15279751 (accessed on 19 September 2020).
32. Zheng, Q.; Chen, H.; Wang, Y.; Duan, J.; Huang, Z. Cosbench: A benchmark tool for cloud object storage services. In Proceedings

of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 998–999.
33. AWS. Performance Design Patterns for Amazon S3. Available online: https://docs.aws.amazon.com/AmazonS3/latest/dev/

optimizing-performance-design-patterns.html (accessed on 19 September 2020).

http://dx.doi.org/10.1088/1742-6596/664/2/022001
http://dx.doi.org/10.1109/TCC.2015.2404821
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://dx.doi.org/10.1145/3452007
https://github.com/vladistan/aws4c
https://github.com/bji/libs3/pull/50
https://nginx.org
https://github.com/hpc/ior
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html#_Toc15279751
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html#_Toc15279751
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html

	Introduction
	Background and Related Work

	Materials and Methods
	Benchmarks
	Modifications of Benchmarks
	Utilizing S3 APIs in Data Centers
	Measurement Protocol
	Test System
	MinIO Benchmarks in HPC

	Results
	MinIO Benchmarks in HPC Environment
	Single Client
	Parallel IO
	MinIO Overhead in Gateway Mode
	MinIO vs. REST vs. TCP/IP

	Tests against S3 Compatible Systems
	In-House Tests
	Comparison with Scality Ring
	Latency Analysis
	Tests against Cloud Systems

	S3Embedded
	Conclusions
	References

